
  

ibm.com/redbooks

MQSeries
Publish/Subscribe
Applications

Mark Perry
Christophe Delporte

Federico Demi
Animesh Ghosh

Marc Luong

Guidelines for designing a 
publish/subscribe environment

Developing and publishing with 
MQI, AMI, and JMS

Programming examples for an 
information push system

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




MQSeries Publish/Subscribe Applications

September 2001

International Technical Support Organization

SG24-6282-00



© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2001)

This edition applies to:

� MQSeries for Windows NT Version 5.2

� MQSeries Integrator for Windows NT Version 2.01

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. MP135 
IBM United Kingdom Ltd
Hursley
Hampshire SO21 2JN
United Kingdom

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the 
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the 
general information in “Special notices” on page 219.



Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Special notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
IBM trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1.  Introduction to publish/subscribe. . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  What is publish/subscribe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  MQ products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1  MQSeries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2  MQSeries Integrator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3  Features of MQ Publish/Subscribe systems . . . . . . . . . . . . . . . . . . . . . 6
1.3.1  Retained publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2  Message persistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3  Topic-based or content-based subscriptions  . . . . . . . . . . . . . . . . . . . 7
1.3.4  Temporary subscriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.5  Expiration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4  Languages and interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1  AMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2  JMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3  MQI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5  Broker networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1  MQSeries Publish/Subscribe broker networks . . . . . . . . . . . . . . . . . . 9
1.5.2  MQSeries Integrator and mixed broker networks . . . . . . . . . . . . . . . . 9

Chapter 2.  Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1  Queues and message headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1  Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2  Message formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3.  Example application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1  The business case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2  Application solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1  Simulated public transport system  . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3  Publish/subscribe scenario 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4  Publish/subscribe scenario 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5  Publish/subscribe scenario 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6  Publish/subscribe scenario 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7  Publish/subscribe scenario 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
© Copyright IBM Corp. 2001 iii



Chapter 4.  The publish/subscribe application . . . . . . . . . . . . . . . . . . . . . . 27
4.1  Software components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2  Environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1  MQSeries Publish/Subscribe installation  . . . . . . . . . . . . . . . . . . . . . 29
4.2.2  JMS installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3  JMS overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4  JMS configuration, JNDI and JMSAdmin  . . . . . . . . . . . . . . . . . . . . . 39
4.2.5  Defining MQSeries required for the application  . . . . . . . . . . . . . . . . 52
4.2.6  AMI overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.7  AMI installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.8  AMI configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3  PubLauncher  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1  The properties file - pub.properties . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2  PubLauncher coding logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3  Starting the publication application . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4  PubThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1  PubThread coding logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5  The publication messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6  Publishing in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.1  Vehicle C AMI program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.2  Vehicle C MQI program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7  Publishing in Java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7.1  Publishing in JMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.2  Publishing in Java AMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8  Subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.1  Setup of the environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.2  XMLParser setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8.3  VAJava setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9  AMI administration setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.10  Sample subscriber application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.10.1  Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10.2  XML parser program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.10.3  GUI program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.10.4  Parsing JMS-based published message . . . . . . . . . . . . . . . . . . . . 102

4.11  Comments and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11.1  Retained publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11.2  Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.11.3  Broker networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 5.  Migration to MQSeries Integrator  . . . . . . . . . . . . . . . . . . . . . . 115
5.1  Step-by-step guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1  Step 1 - Creation of a publication queue . . . . . . . . . . . . . . . . . . . . . 116
5.1.2  Step 2 - Creation of a simple publish message flow . . . . . . . . . . . . 116
iv MQSeries Publish/Subscribe Applications



5.1.3  Step 3 - Deployment to the target broker  . . . . . . . . . . . . . . . . . . . . 119
5.1.4  Step 4 - Executing example applications on MQSeries Integrator  . 119
5.1.5  Step 5 - Trace analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2  Comments and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.1  Streams handling in MQSeries Integrator . . . . . . . . . . . . . . . . . . . . 121
5.2.2  Subscription points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.3  MQSeries Integrator broker networks and collectives. . . . . . . . . . . 123
5.2.4  Topic-based security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.5  Example - migration of applications using streams. . . . . . . . . . . . . 130
5.2.6  Example - message translation using subscription points  . . . . . . . 133
5.2.7  Example - MQSeries Integrator broker networks  . . . . . . . . . . . . . . 137
5.2.8  Example - confidential publish/subscribe environment . . . . . . . . . . 138

5.3  Other forms of interoperability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.1  Mixed broker networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.2  Migrating an MQSeries broker to MQSeries Integrator . . . . . . . . . . 146
5.3.3  Example - mixed broker networks. . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 6.  Web enablement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1  A simple Web-based subscriber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.1  WebSphere Application Server configuration . . . . . . . . . . . . . . . . . 151
6.1.2  Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.1.3  AMI repository configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1.4  Program invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1.5  Discussion about the Web part of the application . . . . . . . . . . . . . . 160

6.2  Comments and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 7.  Advanced Web enablement . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1  Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1.1  A new middle tier component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1.2  Architectural considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2  Forecast application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2.1  ForecastThread: single-threaded behavior . . . . . . . . . . . . . . . . . . . 170
7.2.2  ForecastThread: multithreading behavior . . . . . . . . . . . . . . . . . . . . 171
7.2.3  The forecast message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3  JMS Web subscriber application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3.1  Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3.2  Program invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.4  Program flow of the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.4.1  Using MQSeries Integrator to tweak publication content  . . . . . . . . 180
7.4.2  Comments and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.5  AMI Web application and message filtering  . . . . . . . . . . . . . . . . . . . 182
7.5.1  Content-based subscriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.5.2  Content-based Web subscriber application  . . . . . . . . . . . . . . . . . . 183
 Contents v



7.5.3  Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.5.4  AMI repository configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5.5  Program invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5.6  Discussion of the application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.5.7  Subscribe on request  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.6  Example - a three-tier implementation  . . . . . . . . . . . . . . . . . . . . . . . 190
7.7  Final content-based subscriptions considerations. . . . . . . . . . . . . . . 191

7.7.1  Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7.2  Content-based subscription simulation . . . . . . . . . . . . . . . . . . . . . . 192
7.7.3  Performance implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Chapter 8.  Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1  The technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.1.1  Web-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.1.2  Pervasive applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.1.3  Enterprise Application Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2  IBM offerings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2.1  MQSeries Publish/Subscribe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2.2  MQSeries Integrator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2.3  More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Appendix A.  Hardware and software environment. . . . . . . . . . . . . . . . . . 197
Hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Appendix B.  MQSeries Publish/Subscribe administration commands . 199
strmqbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
dspmqbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
endmqbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Appendix C.  MQSeries Integrator administration commands  . . . . . . . . 201
MQSeries Integrator pub/sub admin commands  . . . . . . . . . . . . . . . . . . . 202
Admin commands for mixed brokers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

mqsilistmqpubsub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
mqsijoinmqpubsub  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
mqsiclearmqpubsub  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Appendix D.  The GUI-based subscriber application  . . . . . . . . . . . . . . . . 205
AMI configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Subscriber configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Simple Web subscriber application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

AMI configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Additional WebSphere Application Server configuration. . . . . . . . . . . . . . 207
vi MQSeries Publish/Subscribe Applications



Web subscriber Forecast application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
JMS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
MQSeries Integrator configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Additional WebSphere Application Server configuration. . . . . . . . . . . . . . 208
Advanced Web subscriber Forecast  application  . . . . . . . . . . . . . . . . . . . 208
AMI configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Servlet configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Additional WebSphere Application Server configuration. . . . . . . . . . . . . . 209

Appendix E.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Using the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

System requirements for downloading the Web material . . . . . . . . . . . . . 212
How to use the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Other resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Referenced Web sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

IBM Redbooks collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Special notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
 Contents vii



viii MQSeries Publish/Subscribe Applications



Preface

Publish and subscribe is an effective way of disseminating information to multiple 
users. This could take the form of a book publisher wanting to tell potential retail 
outlets what titles are in his catalog, a financial broker wanting to post stock 
prices to anyone in the world who may wish to invest with a particular stock, or 
any information provider who wants an efficient and effective process to get 
information to the people who need it. In these analogies, publish/subscribe 
applications can help to enormously simplify the task of getting business 
messages and transactions to a wide, dynamic, and potentially large audience in 
a timely manner.

These problems face many businesses and using publish/subscribe technology 
can provide a very manageable and extendable solution.

This redbook positions the MQSeries Publish/Subscribe to MQSeries Integrator 
Publish/Subscribe.

This redbook will help you create, tailor and configure an application from 
publishing data through to subscribing via Web pages.

This redbook gives a broad understanding of building and running an entire 
publish/subscribe solution.

This redbook will give you a quick start to designing and creating a solution and 
then migrating it from MQSeries Publish/Subscribe to MQSeries Integrator 
Publish/Subscribe.

The operating system used for everything described within this book is Windows 
2000 Professional Edition. However, all the MQSeries applications we discuss 
can also run on many other platforms, and this is mentioned in many places 
throughout the book. Complete information about the platforms supported by the 
products described can be obtained from: 

http://www-4.ibm.com/software/ts/mqseries/

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization’s Hursley Center in 
the UK.
© Copyright IBM Corp. 2001 ix

http://www.ibm.com


The writers of this redbook - Mark, Marc, Christophe, Federico and Animesh

Mark Perry is an IT Specialist and Project Leader at the International Technical 
Support Organization, Hursley Center. He joined IBM in 1977 and has 10 years 
of experience within the MQ community at Hursley, mostly as a team leader in 
System Test, as well as spending some time working for MQ Services in the US.

Christophe Delporte is an IT Specialist working for Global Services in IBM 
Belgium/Luxembourg. He has four years of experience with the WebSphere and 
DB2 family products and on the iSeries platform. He holds a degree in Civil 
Engineering from the Polytechnic Faculty of Mons, Belgium. He has previously 
participated in the production of Redbooks in connection with DB2, XML and 
Java.

Federico Demi is an IT manager working for Primeur, an IBM business partner 
in Italy. He has eight years of experience in middleware and the Enterprise 
Application Integration fields. He holds a degree in Computer Science from the 
University of Pisa. His areas of expertise includes the development and 
management of MQ and related products on large projects.
x MQSeries Publish/Subscribe Applications



Animesh Ghosh is a Senior Software Engineer working for IBM Global Services 
in Bangalore, India. He has almost four years of experience in e-Business 
Enterprise Solutions. He holds a degree in Computer Applications from the 
College of Engineering and Technology in Bhubaneswar. He has worked at IBM 
for two years. His areas of expertise include Java, WebSphere family products 
and Database Products.

Marc Luong is a certified IBM IT Expert working for Software Group in IBM 
France. He has 25 years of experience in database design and remote server 
communications. Marc joined IBM in 1986. Since 1994, he has worked very 
closely with the IBM Hursley laboratory on MQSeries multi-platform products to 
implement message queueing solutions in customer sites. He holds degrees in 
Computer Science and Electronic Engineering from Ecole Superieure 
d’Informatique in Paris and the University of Paris. He has participated in several 
Redbooks concerning DB2 and MQSeries products.

Thanks also to the following people for their help and contributions to this project:

Alasdair Paton, Graham Winn, Kathryn McMullan, Peter Niblett, Tim Dunn, Brian 
Homewood, and Rachel Norris.
MQSeries, IBM Hursley

Neil Kolban
Technical Support, IBM Dallas

Special notice
This publication is intended to help application developers to build and 
understand a complete publish/subscribe solution. The information in this 
publication is not intended as the specification of any programming interfaces 
that are provided by MQSeries, MQSeries Integrator, WebSphere Application 
Server or any other products mentioned in this book. See the PUBLICATIONS 
section of the IBM Programming Announcement for the WebSphere family for 
more information about what publications are considered to be product 
documentation.
 Preface xi



IBM trademarks
The following terms are trademarks of the International Business Machines 
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your 
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)® 
IBM ®
AIX
AS/400
CICS
DB2
DB2 Universal Database
Everyplace
IMS
IMS/ESA
iSeries
MQSeries
OS/390

Redbooks
Redbooks Logo 
RETAIN
S/390
SecureWay
SP
SupportPac
VisualAge
WebSphere
400
Lotus
Domino
xii MQSeries Publish/Subscribe Applications

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


Chapter 1. Introduction to 
publish/subscribe

This chapter introduces publish/subscribe, what it is and how it can be used, 
along with some of the choices available to users when developing and 
implementing publish/subscribe applications.

1

© Copyright IBM Corp. 2001 1



1.1  What is publish/subscribe?
Publish/subscribe applications are intended for situations where a single 
message is required by, and should be distributed to, multiple users. Their big 
advantage over other delivery methods is that they keep the publisher separated 
from the subscriber. This means that the publisher in a publish/subscribe 
application doesn’t need to have any knowledge of either the subscriber’s 
existence or the applications that may use the published information. Likewise, 
the subscriber or subscriber applications don’t need to know anything about the 
publisher application.

Put as simply as possible, a publish/subscribe application has one or more 
publishers who publish messages from an application to a broker, and a group of 
subscribers who subscribe to some or all of those published messages that are 
held on the broker. The system matches the publications to the subscribers and 
ensures that all the messages are made available and delivered to all the 
subscribers in a timely manner.

Figure 1-1   A simple pub/sub environment 
2 MQSeries Publish/Subscribe Applications



Figure 1-1 shows Publisher1 and Publisher2 publishing messages concerned 
with schedule information onto the broker. Subscribers can choose to subscribe 
or unsubscribe to that information available on the broker as necessary.

Multiple brokers can simply be connected together, enabling brokers to 
exchange messages. This allows subscribers to one of the brokers to pick up 
messages that have been published to another broker, further freeing the 
subscriber from the contraints of using the same broker as the publisher.

Figure 1-2   Extended pub/sub example 

The subscribers are able to choose between looking at all the messages 
published, or just some of the messages based upon various criteria that are 
important to them. This is known as either content-based or topic-based 
subscription and is described in more detail later in this book. Publish/subscribe 
applications are widely used as a means of easily disseminating information to 
multiple users who may be interested in some or all of the information available. 
Additional subscribers can choose to either subscribe or unsubscribe as time 
 Chapter 1. Introduction to publish/subscribe 3



goes by, and all the subscribers are completely independent of each other. It’s 
also worth noting that when a subscriber receives information it can then go on to 
publish that material itself, possibly in a modified form, either back to the broker it 
got it from or to another broker.

In traditional systems using point-to-point connections attempting to provide this 
kind of service, the matrix of connections can grow explosively, becoming very 
difficult to control and maintain. The root problem is that the messaging 
application always needs to know something about where the message is going, 
such as a queue manager name or a queue name. When high numbers of 
destinations are possible, the network view can become extremely complex. 

A big advantage of a publish/subscribe system is that it can remove this 
unmanageable aspect of a point-to-point network and replace it with a very 
simple network of a publisher, a broker, and all the subscribers. New subscription 
clients or services can simply be added without any impact or interruption in the 
service to other users. This provides a superior means of streamlined and 
efficient integration and growth across an enterprise, and of course, since 
MQSeries is used as the backbone for message delivery, all the benefits and 
features of MQSeries are inherited.

1.2  MQ products
The MQSeries family consists of complementary publish/subscribe offerings:

� MQSeries

� MQSeries Integrator

1.2.1  MQSeries
MQSeries provides assured, once-only delivery of messages between your IT 
systems. It connects more than 30 industry platforms including those from IBM, 
Microsoft, Sun, and HP using a variety of communications protocols.

MQSeries provides rich support for applications:

� Application programming interfaces: the Message Queue Interface (MQI) and 
Application Messaging Interface (AMI) are supported in several programming 
languages.

� Communication models: point-to-point (including request/reply and 
client/server) and publish/subscribe are supported.

� The complexities of communications programming are handled by the 
messaging services and are therefore removed from the application logic.
4 MQSeries Publish/Subscribe Applications



� Applications can access other systems and interfaces through gateways and 
adapters to products such as Lotus Domino, Microsoft Exchange/Outlook, 
SAP/R3, and IBM’s CICS and IMS/ESA products.

MQSeries Publish/Subscribe is available as SupportPac MA0C and can be 
downloaded from:

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpm1.html

With MQSeries you can have one broker for each queue manager and the broker 
takes the same name as that queue manager, but the broker does not have to 
reside on the same machine as any of the publishers or subscribers. It can be on 
any machine or supported platform in your network, provided there is a route 
between the publisher’s or subscriber’s queue manager and the broker.

1.2.2  MQSeries Integrator
MQSeries Integrator Version 2.0 extends the capabilities of MQSeries 
Publish/Subscribe by supporting:

� Enhanced publish/subscribe function through exploitation of structured topic 
names, access control, content-based subscriptions, and subscription points.

� Enhancement of message processing through the addition of new message 
processing nodes to complement or replace the supplied nodes.

� Interfaces that allow messages to be enriched with information from a 
database, or to be stored in a database.

You can upgrade your applications, messages, and brokers to take advantage of 
the enhancements in MQSeries Integrator Version 2.0. You can also continue to 
use your existing MQSeries Publish/Subscribe applications and messages 
unchanged, by tailoring your Version 2.0 system to provide compatible support.

MQSeries Integrator works with MQSeries messaging, extending its basic 
connectivity and transport capabilities to provide a powerful message broker 
solution driven by business rules. Messages are formed, routed, and 
transformed according to the rules defined by an easy-to-use graphical user 
interface (GUI).

Diverse applications can exchange information in unlike forms, with brokers 
handling the processing required for the information to arrive in the right place in 
the correct format, according to the rules you have defined. The applications 
have no need to know anything other than their own conventions and 
requirements.
 Chapter 1. Introduction to publish/subscribe 5

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpm1.html


Applications also have much greater flexibility in selecting which messages they 
wish to receive, because they can specify a topic filter, or a content-based filter,or 
both, to control the messages made available to them.

MQSeries Integrator provides a framework that supports supplied, basic 
functions along with plug-in enhancements, to enable rapid construction and 
modification of business processing rules that are applied to messages in the 
system.

1.3  Features of MQ Publish/Subscribe systems
Here are some of the key features that can be used with MQSeries 
Publish/Subscribe applications.

1.3.1  Retained publications
By default, a broker discards a publication when it has been sent to all interested 
subscribers. However, a publisher can specify that it wants the broker to keep a 
copy of a publication, which is then called a retained publication. The copy can 
be sent by the broker to subsequent subscribers who register an interest in the 
topic. This means that new subscribers don’t have to wait for information to be 
published again before they receive it.

For example, a subscriber registering a subscription to a stock price would 
receive the current price immediately, without waiting for the stock price to 
change (and hence be republished). The broker retains only one publication for 
each topic and subscription point, so the old publication is deleted when a new 
one arrives.

1.3.2  Message persistence
Persistent messages in MQ are logged by the queue manager and are preserved 
across application and queue manager restarts. Non-persistent messages may 
be lost if the queue manager fails, but are only delivered once at the most, 
whereas persistent messages are guaranteed to be delivered exactly once. 

We recommend that you send all subscription registration messages as 
persistent messages. All subscriptions are maintained persistently by the broker 
and are preserved across broker restarts and system failures. Brokers maintain 
the persistence of publications as set by the publisher, unless changed by 
options specified when the subscription is registered. These options are 
non-persistent, persistent, persistence as queue, or persistence as publisher (the 
default).
6 MQSeries Publish/Subscribe Applications



When speed of delivery is the most important consideration, then you can 
choose to publish using non-persistent messages. This works especially well 
with messages that have a short life span and will rapidly be superseded, or 
where assured delivery is not of primary importance.

To see the maximum performance gain, you may also configure your broker to 
process messages outside of syncpoint. The method for doing this varies for 
MQSeries and MQSeries Integrator and is described in the specific product’s 
manuals.

1.3.3  Topic-based or content-based subscriptions
When you create a subscription, you can choose to subscribe to a specific topic, 
such as trains or buses in our example application of a transport system. But you 
could also subscribe to specific content, which for example might be trains that 
will arrive after 7pm. The difference here is that the content-based subscription is 
filtering out information from the topic, giving the user a much more refined 
result. This filtering takes place on the broker. Content-based subscription is 
supported only in MQSeries Integrator.

1.3.4  Temporary subscriptions
It is possible that a user can create a temporary subscription by specifying a 
temporary dynamic queue as the subscriber queue. When the subscribing 
application ends, the queue is removed and the subscription therefore removed.

1.3.5  Expiration
Messages can be created with an expiration date and time. This means that 
once that assigned time has arrived, the data is no longer available to 
subscribers. This is particularly relevant to messages with data pertaining to a 
moment in time, for example an offer of a loan rate where the rate is valid only for 
a period of time, or a customer enquiry where a reply is needed within a set 
period of time or not at all.

1.4  Languages and interfaces
These are the programming choices available to you that we will cover in this 
book.
 Chapter 1. Introduction to publish/subscribe 7



1.4.1  AMI
The Application Messaging Interface (AMI) API is one of the latest additions to 
the MQSeries API portfolio. AMI has very interesting features and a brand new 
philosophy.

AMI provides a higher level, easy-to-use interface to messaging, reducing to a 
minimum the number and complexity of data structures and parameters.

AMI provides verbs for specific messaging styles (send and forget, request/reply, 
publish/subscribe) and moves middleware-specific options out of the application 
and into the administration domain by using an external persistent repository, 
which can be easily maintained.

Programs written to the AMI interoperate seamlessly with any other MQSeries 
messaging API flavor (for example, Java JMS, and RPG MQI).

1.4.2  JMS
Java Message Service (JMS) is one of the API specifications included in the 
Java 2 Enterprise Edition (J2EE) specification defined by Sun. JMS provides a 
framework that enables the development of portable, message-based 
applications in the Java programming language. It defines a common set of 
messaging concepts that must be supported by all JMS technology-compliant 
messaging systems.

MQSeries complies to the JMS specification and support is provided through the 
MA88 SupportPac.

1.4.3  MQI
The Message Queue Interface is the full set of API calls that are available across 
the entire MQSeries family.

1.5  Broker networks
Geographically distributed systems or requirements for heavy workloads can be 
accommodated by a network of brokers having two-way MQSeries connectivity 
among them.
8 MQSeries Publish/Subscribe Applications



1.5.1  MQSeries Publish/Subscribe broker networks
MQSeries Publish/Subscribe brokers can be linked to form a hierarchy, and 
publications and subscriptions can flow from any broker to any other broker in 
the hierarchy. However an administrator can limit the scope of a publication to a 
subsection of the hierarchy.

Publications and subscriptions are passed from one broker to another via the 
hierarchy structure even if some direct MQSeries connection exists.

1.5.2  MQSeries Integrator and mixed broker networks
As with MQSeries Publish/Subscribe, MQSeries Integrator brokers can be 
connected to form networks. On top of the hierarchy topology, a new topology 
type is supported, called a collective.

A collective is a set of brokers in which the queue managers are totally 
connected. (that is, every queue manager is directly connected to every other 
queue manager). Communication between brokers is optimized within this type 
of topology and collectives may be connected to other stand-alone brokers or 
collectives in a large MQSeries Integrator topology.

A broker network can also contain both MQSeries Integrator brokers and 
MQSeries Publish/Subscribe brokers, without any constraints on the parent-child 
relationship between brokers of different types.
 Chapter 1. Introduction to publish/subscribe 9



10 MQSeries Publish/Subscribe Applications



Chapter 2. Technical overview

This chapter gives an overview of the functional and programming aspects of 
publish/subscribe applications, and describes some of the aspects that should be 
understood. It will then cover the choices that can be made before beginning to 
write an application.

2

© Copyright IBM Corp. 2001 11



2.1  Queues and message headers
A publish/subscribe environment is made up of three components: the 
publishers, the message broker and the subscribers. 

IBM provides two types of message brokers: the MQSeries Publish/Subscribe 
broker and the MQSeries Integrator broker. 

There are also three different types of API available for writing publish/subscribe 
applications: MQI, AMI and JMS. 

Depending on these classifications, the messages containing the commands 
exchanged between the three components have different types of headers and 
are sent to different queues.

2.1.1  Queues
Figure 2-1 shows a typical flow of commands between the three 
publish/subscribe components and the destination queues.

Figure 2-1   Command flow and destination queues 
12 MQSeries Publish/Subscribe Applications



The commands exchanged between the publisher, the broker and the subscriber 
components are messages sent to queues. Table 2-1 names the queues 
represented in Figure 2-1 on page 12.

Table 2-1   Command queues

The control queue
The broker control queue SYSTEM.BROKER.CONTROL.QUEUE and the other 
queues SYSTEM.BROKER.* are created the first time the broker is started for 
MQSeries Publish/Subscribe, or on broker creation for MQSeries Integrator. The 
control queue is used to send all the commands to the broker apart from the 
publication and delete publication commands.

� in JMS, the control queue is specified in the BROKERCONQ parameter used 
when creating the TopicConnectionFactory. It defaults to 
SYSTEM.BROKER.CONTROL.QUEUE and should not be changed.

� in AMI, the user doesn’t specify the control queue. AMI knows all messages 
and put publications must be sent to the queue 
SYSTEM.BROKER.CONTROL.QUEUE.

� in MQI, the control queue must be explicitly passed to the MQOPEN or 
MQPUT1 verb.

The publication queue
The publication commands are not sent to the control queues as all other 
publish/subscribe commands. They are sent to one or more publication queues. 

Queues Pub/Sub MQSeries Pub/Sub MQSI JMS

Q1, the control queue SYSTEM.BROKER.CO
NTROL.QUEUE

SYSTEM.BROKER.CO
NTROL.QUEUE

SYSTEM.BROKER.CO
NTROL.QUEUE

Q2, the reply queue ReplyToQueue in the 
MQMD of the command 
message

ReplyToQueue in the 
MQMD of the command 
message

ReplyToQueue in the 
MQMD of the command 
message

Q3, the publication 
queue

SYSTEM.BROKER.DE
FAULT.STREAM 
(Default)

Any Queue mentioned 
in the input node

SYSTEM.BROKER.DE
FAULT.STREAM 
(Default)

Q4, the reply queue ReplyToQueue in the 
MQMD of the command 
message

ReplyToQueue in the 
MQMD of the command 
message

ReplyToQueue in the 
MQMD of the command 
message

Q5, the subscription 
queue

Queue mentioned when 
subscribing

Queue mentioned when 
subscribing

SYSTEM.JMS.ND.SUB
SCRIBER.QUEUE or 
SYSTEM.JMS.D.SUBS
CRIBER.QUEUE
 Chapter 2. Technical overview 13



The queues used depend on the type of broker used. 

When using the publish/subscribe functionality of MQSeries, the queues used for 
publications are stream queues. There is one default stream queue called 
SYSTEM.BROKER.DEFAULT.STREAM. By default, this queue is used for all 
publications. An administrator can create other stream queues. The first time a 
new stream queue is used, a register publisher command must be issued to 
make the broker aware of its new configuration or it will ignore this stream queue 
until a subscriber subscribes specifying this stream queue. Stream queues can 
be used to spread messages across more than one queue when a lot of 
messages are published in a short time. See 4.11.2, “Streams” on page 108.

When using the publish/subscribe functionality of MQSeries Integrator, the 
queues used for publications are the queue or queues mentioned in the input 
node or nodes of the message flow containing the publication node.

Depending on the programming method used, the publication queues are 
defined:

� In JMS: when creating the TopicConnectionFactory in JNDI (Java Naming 
and Directory Interface), the publication queue is indicated in the parameter 
BROKERPUBQ whose value defaults to 
SYSTEM.BROKER.DEFAULT.STREAM.

� In AMI: the Queue Name parameter of the service point used for the 
Publisher in the AMI repository is the publication queue.

� In MQI: you must mention the queue name with the MQPUT verb.

The subscription queue
The subscription queue is the destination to which the broker sends messages 
matching a particular subscription. When a subscriber registers to a topic, it 
indicates to the broker to which queue it wants publications to be forwarded. One 
queue may be used by several registrations. This queue is specified in one of the 
parameters of the register subscriber command. Depending on the APIs used, 
this parameter is specified:

� In JMS: two approaches exist, the shared queue approach and the multiple 
queue approach.

– The shared queue approach:

• For the non-durable subscriptions, all subscribers share the queue 
declared with the parameter BROKERSUBQ of the 
TopicConnectionFactory. Its default value is 
SYSTEM.JMS.ND.SUBSCRIPTION.QUEUE. Different 
TopicConnectionFactory objects must be defined to have different 
subscriptions queues for the subscribers. 
14 MQSeries Publish/Subscribe Applications



• For the durable subscriptions, the queue name is specified when 
defining the topic in JNDI. Its default value is 
SYSTEM.JMS.D.SUBSCRIPTION.QUEUE. All durable subscribers to 
the same topic share the same queue.

– The multiple queue approach:

• For the non-durable subscriptions, a temporary dynamic queue is 
created for each subscriber based on the model queue 
SYSTEM.JMS.MODEL.QUEUE. The name of the temporary queue 
starts with the name of the BROKERSUBQ parameter of the 
TopicConnectionFactory. To indicate that the multiple queue approach 
is used, this parameter must end with the * character.

• For the durable subscriptions, it works the same way as for the 
non-durable subscriptions, but the queue name prefix is mentioned 
here when defining the topic in JNDI.

� In AMI: the queue name is indicated in the Queue Name parameter of the 
service point used for the Receiver Service by the subscriber in the AMI 
repository. To create a temporary queue for each subscriber, the queue 
specified can be a model queue.

� In MQI: the subscriber’s queue name is specified as a parameter when 
building the register subscriber command. If the parameter is not 
mentioned, the ReplyToQ field of the register subscriber command 
message is used.

The replies
The response messages are optional and are only produced if the incoming 
command asked for one by setting the MsgType or Report fields in the incoming 
MQ message descriptor.

But normally, only the MQI programmers are aware of the message fields in the 
MQMD.

When using AMI, the methods are overloaded so that you can mention a receiver 
service point when wanting a response to a command sent to the broker. For 
example, you can use the publish method of a Java AMI AmPublisher:

� By specifying a receiver to get a response:

amPublisher.publish(amMessagePub, amReceiver, amPolicy);

� Or not:

amPublisher.publish(amMessagePub, amPolicy);
 Chapter 2. Technical overview 15



When coding with the MQ implementation of JMS, we can’t decide if responses 
are needed or not. Report messages are used and consumed under the cover by 
JMS for both a successful and an unsuccessful completion of the command. The 
MQ queue used for these reports is SYSTEM.JMS.REPORT.QUEUE.

2.1.2  Message formats
Following the message descriptor (MQMD) is another header. Its type depends 
upon the type of broker being used:

� MQSeries Publish/Subscribe supports the MQ Rules and Format Header 
Version 1 (MQRFH1).

� MQSeries Integrator Publish/Subscribe supports both MQ Rules and Format 
Header Version 1 and 2 (MQRFH2 and MQRFH1). The MQRFH2 header is 
recommended because it gives the possibility of using the new features 
available with MQSeries Integrator, such as content filtering.

Figure 2-2   Messages headers encountered with publish/subscribe 

Figure 2-2 summarizes the various types of messages headers. An MQSeries 
message is made up of two parts: the message descriptor (MQMD) and the 
message data. The message data can optionally contain one or more headers 
before the real payload data. The message data can also start with the MQ 
defined headers MQRFH1 and MQRFH2, either isolated or both.

We have a triple choice of interfaces with which to write publish/subscribe 
applications: MQI APIs, AMI APIs, and JMS APIs. This choice impacts the way 
the headers are built and the user needs to be aware of the differences.

� MQI: this is the only method where the application developer needs to be fully 
aware of these headers, since the message must be built with the correct 
header and then be put to the correct control or publication queue. Typically, 
the program is written in C MQI although other programming languages such 
as Java can also be used. The user has the freedom to build the header he or 
she wants and specifically a MQRFH1 or MQRFH2 header. Given that the 
16 MQSeries Publish/Subscribe Applications



MQRFH2 headers can be built with MQI, all the possibilities of MQSeries 
Integrator can be used with this API.

� AMI: the headers are built automatically by the AMI APIs. The user can 
choose between both types of headers by specifying the Service Type 
parameter in the properties of the service point definition in the AMI 
repository. More information about AMI can be found in 4.2.6, “AMI overview” 
on page 52 and also in the Application Messaging Interface, SC34-5604. It is 
possible to make use of the advanced features provided with MQSI without 
having to manipulate the MQRFH2 header directly.

� JMS: by default, JMS generates a MQRFH1 header and also embeds a 
MQRFH2 header before the payload. Although MQRFH2 headers are 
created by a JMS application, it is not possible to use such MQSeries 
Integrator advantages as content filtering because these possibilities are not 
included in the JMS standard. The MQRFH2 header is used here by JMS for 
compliance with the JMS Message Interface, which specifies that JMS 
messages are composed of three parts:

– Header - All JMS messages support the same set of header fields. Header 
fields contain values used by both clients and providers to identify and 
route messages. 

– Properties - Each message contains a built-in facility for supporting 
application-defined property values. Properties provide an efficient 
mechanism for supporting application-defined message filtering. 

– Body - JMS defines several types of message bodies, which cover the 
majority of messaging styles currently in use.

The JMS headers and properties that are not included in the MQMD message 
descriptor are placed in the MQRFH2 header.

It is also possible to change this behavior and force a JMS application to 
create only MQRFH1 headers for compatibility reasons with other MQ 
applications that don’t expect an MQRFH2 header. This is done by changing 
the JNDI parameter of the topic TARGCLIENT from its default value JMS to the 
value MQ. Another method is to use directly the MQSeries class for JMS 
implementing the JMS interface to set at runtime the type of header to be 
generated. For more information concerning JMS, please refer to 4.2.3, “JMS 
overview” on page 36.
 Chapter 2. Technical overview 17



18 MQSeries Publish/Subscribe Applications



Chapter 3. Example application

In this chapter we give a general overview of a publish/subscribe application that 
we will develop and the several scenarios that will be discussed throughout the 
book.

The example we have chosen in order to show publish/subscribe messaging 
concepts, tools and techniques is the implementation of a fictional public 
transport system.

3

© Copyright IBM Corp. 2001 19



3.1  The business case
Consider a transport system where an operator has many things going on at 
once. There may be buses following different routes with passengers who want 
to know the status of their bus and when it will arrive at their stop. There may 
also be operators who need to know the status of the bus fleet from time to time. 

More specifically the passengers would probably be interested in the current 
status of their bus, when it will arrive at their stop, and what buses do and will 
stop at their station. Most of what they will be interested in will be short-lived 
information. That is information that is transient and has little or no value to them 
once the moment has passed, since there will be more up-to-date information 
available or about to become available.

The operators, on the other hand, would possibly be interested in where all the 
buses are at a given time, whether they are on schedule or experiencing any 
delays, which buses have problems, and whether there are any breakdowns 
within the fleet. Some of this information is transient, but if it is retained it 
provides an historical picture of events that may be useful input to other 
processes.

The transport provider would like to have all the information available to the 
different consumers via Web pages where they can select what information they 
need.

As the buses travel around their routes they need to log their position each time 
they stop, get delayed, or break down. This information can then be made 
available to all the consumers on demand.

3.2  Application solution
We will now describe our example application in more detail.

3.2.1  Simulated public transport system
The sample application we describe in this book implements a simplified model 
of a global public transport system.

The global transport system is actually made of federated transport systems 
classified by mode (for example, trains, tube or buses) and geography (for 
example, Dover, London, or Hursley).
20 MQSeries Publish/Subscribe Applications



Each transport system is composed of a collection of independent routes, and a 
route belongs to just one transport system. Each route has the following 
attributes:

� Route name: this is unique across the transport system.

� Number of stops: this is the total number of stops along the route; stops are 
numbered starting from number 1.

� Time between stops: this is the number of seconds it takes for a vehicle to 
move from one stop to the next; we assume that all the stops on a given route 
are evenly spaced out along that route.

A route can accommodate a number of vehicles, each vehicle is identified by a 
name that is unique route-wide. All vehicles can contain up to 100 passengers.

Vehicles move along the route in a one-way fashion from the first to the last stop 
according to the time between stops attribute of the route. When a vehicle finally 
reaches the last stop, it disappears from the system. The only exceptions to this 
behavior are:

� The breakdown of a vehicle, which causes its early removal from the system.

� An accident found along the route, which delays the vehicle by a fixed amount 
of time (20 seconds).

� Light traffic conditions, which dynamically decrease the time between stops 
by a 25% factor.

� Heavy traffic conditions, which dynamically decrease the time between stops 
by a 25% factor.

When a vehicle reaches a stop, the following information is collected:

� Time-stamp (hh:mm:ss)

� Vehicle fill-in ratio (0 to 100)

� Traffic conditions (light, normal, heavy)

� Detection of any breakdowns

� Detection of any accidents

Several attribute values in the simulated transport system are randomly 
generated according to the following distribution of probability:

� Breakdowns happen 5% of the time

� Accidents happen 10% of the time

� Traffic is heavy 25% of the time, light 25% of the time, and normal for the 
remaining 50% of the time
 Chapter 3. Example application 21



� The fill-in ratio is a completely random non-negative integer less than or equal 
to 100.

Figure 3-1   High-level overview of the example public transport system 

Figure 3-1 shows a very high level overview of the example public transport 
system.

3.3  Publish/subscribe scenario 1
This scenario is based upon MQSeries Publish/Subscribe. The format of all 
messages exchanged by the applications written for our simulated public 
transport system is XML.

A vehicle publishes information about its position and state at each stop along 
the route, using the topic: 
PublicTransport/Positions/Mode/Geography/Route/Vehicle.

Vehicle 1

Vehicle 2

Vehicle 3

Publish

Publish

Publish
PublicTransport/Positions/Tube/London/Route1/Vehicle2

BROKER

PublicTransport/Positions/Tube/London/Route1/Vehicle2

PublicTransport/Positions/Tube/London/Route1/Vehicle1

Route 1

PublicTransport/*
PublicTransport/Alerts/Accidents

PublicTransport/Alerts/Breakdowns

Register/Deregister Subscription

Broker Publish
22 MQSeries Publish/Subscribe Applications



In the event of an accident or a breakdown, a message is published on topic: 
PublicTransport/Alerts/Accidents or PublicTransport/Alerts/Breakdowns.

The subscribing application is a Java stand-alone application written to the AMI 
interface, while the publishing application is provided in the following flavors:

� Java JMS

� Java AMI

� C AMI

� C MQI

The logic of all these versions is identical. The publisher application publishes 
messages on the default broker stream without registering first. (See 4.11.2, 
“Streams” on page 108.)

All the messages are published in a non-retained fashion. In fact this is the only 
publishing style supported by JMS. We will discuss retained publications in 
further detail in 4.11.1, “Retained publications” on page 105.

Chapter 4, “The publish/subscribe application” on page 27 contains a detailed 
discussion of this scenario.

Figure 3-2   Overview of the scenarios discussed in the book 
 Chapter 3. Example application 23



3.4  Publish/subscribe scenario 2
This scenario consists of the migration of the applications developed in the 
previous scenario to an MQSeries Integrator broker. This scenario demonstrates 
the API level interoperability between these two environments.

MQSeries Publish/Subscribe interoperability with MQSeries Integrator Version 2 
Publish/Subscribe can be seen from three points of view:

� Migration/upgrading: migrating an established production 
MQSeries Publish/Subscribe broker to an MQSeries Integrator Version 2 
broker (including retained publications, registered subscriptions, registered 
publications, and topology information).

� Broker-to-broker interoperability: setup and characteristics of mixed broker 
networks.

� Application-level interoperability: execution of MQSeries Publish/Subscribe 
applications against an MQSeries Integrator Version 2 broker.

Chapter 5, “Migration to MQSeries Integrator” on page 115 will focus mainly on 
application-level interoperability, but the other two aspects will be briefly 
discussed as well.

The execution of MQSeries Publish/Subscribe programs against an MQSeries 
Integrator broker is rather simple. All that is needed is to create a new local 
queue and to deploy a new simple message flow.

Yet even the simplest migration path to MQSeries Integrator-based 
publish/subscribe has several benefits, such as exploitation of the new security 
features that come with MQSeries Integrator. 

Chapter 5, “Migration to MQSeries Integrator” on page 115 contains a detailed 
discussion of this scenario.

3.5  Publish/subscribe scenario 3
This scenario describes the migration of the stand-alone Java subscriber to a 
servlet running under WebSphere Application Server.

The first step towards the delivery of all the published information in a Web 
environment is the implementation of a simple subscriber application using a 
servlet running under WebSphere.
24 MQSeries Publish/Subscribe Applications



This first approach suffers from several limitations:

� Subscriptions coming from the Web are very short lived, so the use of 
retained publications is required: 

– This does not accommodate event information very well (accidents and 
breakdowns)

– JMS cannot be used on the publishing side

� There is no immediate way in which to deliver value-added services such as 
computation of vehicle position forecasts to Web users.

Chapter 6, “Web enablement” on page 149 contains a detailed discussion of this 
scenario.

3.6  Publish/subscribe scenario 4
This scenario uses publish/subscribe in a more sophisticated way, in order to 
deliver advanced features such as real-time vehicle position monitoring and 
position forecasts, taking into consideration traffic conditions, accidents and 
breakdowns.

Both state and event information is published as non-retained by the publisher 
application. The only consumer of this information is a multithreaded application 
that is permanently subscribed to state and events messages.

This latter application re-publishes input information augmented with forecasts 
on a new retained topic subtree, using a particular technique that avoids the 
usage of a helper database to keep track and amend forecasts.

The Web subscriber can now be partially rewritten in order to access the 
publish/subscribe broker through JMS, which is the most natural way of doing 
messaging in a J2EE environment.

Chapter 7, “Advanced Web enablement” on page 165 contains a detailed 
discussion of this scenario.

3.7  Publish/subscribe scenario 5
This last scenario demonstrates how to deliver value-added information on the 
Web using a content-based publish/subscribe, a feature unique to MQSeries 
Integrator.
 Chapter 3. Example application 25



The Web application AMI subscriber from scenario 4 is extended in order to allow 
the specification of such filters as the following:

� End user views: all vehicles on a given route and stops within a range of time 
(for example, all tube trains leaving Kings Cross station from 17:00 to 17:12)

� Operator views: all vehicles in critical conditions (for example, all London 
buses currently stuck in heavy traffic, or delayed by an accident, or halted by 
a breakdown)

The filtering of messages will be performed centrally on the broker, optimizing the 
usage of network resources. 

We will demonstrate that the code changes on the application required to 
implement these sophisticated features are minimal.

Chapter 7, “Advanced Web enablement” on page 165 contains a detailed 
discussion of this scenario.
26 MQSeries Publish/Subscribe Applications



Chapter 4. The publish/subscribe 
application

The publish/subscribe application in its first version is made up of two parts: the 
publication part and the subscription part. In this chapter we discuss each part in 
detail and describe the steps we followed.

4

© Copyright IBM Corp. 2001 27



4.1  Software components
Before describing these two parts in detail, we will describe the preliminary steps 
to install the complementary software components required for creating a 
publish/subscribe application and introduce their use:

� MQSeries Publish/Subscribe

– Installation of the SupportPac

� Java Message Service APIs

– Installation of the SupportPac

– Overview of JMS

– Configuration of JMS

� Application Messaging Interface APIs

– Overview of AMI

– Installation of the SupportPac

– Configuration of AMI

After introducing these techniques, we illustrate them with our example:

� The publisher application:

The publisher application is governed by a Java application called 
PubLauncher. It starts a Java thread, PubThread, for each vehicle on each 
route.

The publication of the vehicle positions, accidents and breakdowns is made 
through C AMI, C MQI, Java AMI and JMS API calls.

In this part we describe:

– The controlling application: PubLauncher

– The Java thread, called PubThread, started for each vehicle

– The categories of messages published for each vehicle

– How to publish messages in C AMI, C MQI, Java AMI, JMS and illustrate 
these techniques commenting on the publication helper modules used in 
the application

� The subscription part 

The following sections discuss the steps required to port the existing 
subscriber application to a Web based application in the WebSphere 
environment. We discuss:
28 MQSeries Publish/Subscribe Applications



� WebSphere Application Server configuration

� Servlet configuration

� AMI Repository configuration

� Program invocation 

� Discussion of the Web part of the application

4.2  Environment setup
The application is running with MQSeries Version 5.2. We assume that 
MQSeries has already been successfully installed. Please refer to MQSeries for 
Windows NT and Windows 2000 V5R2 Quick Beginnings, GC34-5389 for more 
information on how to install and configure MQSeries.

To use the publish/subscribe functionality provided by MQSeries, we need to 
install the Pub/Sub SupportPac. The application is also using AMI and JMS API, 
both provided with SupportPacs as well.

The Java part of the application has been developed with VisualAge for Java 
Version 3.5.3. We don’t cover the installation of this product here because it is 
adequately covered in the product documentation, but we do explain the 
configuration needed to use the MQ, AMI and JMS APIs with it.

For JMS, we also need a JNDI server. We describe how WebSphere Application 
Server and VisualAge for Java provide this functionality.

4.2.1  MQSeries Publish/Subscribe installation
Before using MQSeries Publish/Subscribe, please check that your MQSeries 
software product was successfully installed on your machine.

To run an MQSeries Publish/Subscribe broker, you need to install an additional 
component which can be downloaded from the Web and be installed as describe 
here for the Windows NT / 2000 platform:

� Go to Web site:

http://www.software.ibm.com/ts/mqseries/txppacs

� Select the SupportPac MA0C. This SupportPac provides the MQSeries 
Publish/Subscribe facility for Microsoft Windows NT and 2000. Other 
operating systems are also supported.

� Click the ma0c_nt.zip icon to download the files for MQSeries 
Publish/Subscribe for Windows 2000 in InfoZip compressed format.
 Chapter 4. The publish/subscribe application 29

http://www.software.ibm.com/ts/mqseries/txppacs


� To install the MQSeries Publish/Subscribe, you need to uncompress the 
downloaded ma0c_nt.zip file into a temporary directory, make it current and 
then execute the setup.exe program.

� Click Next to start the installation of MQSeries Publish/Subscribe as shown in 
Figure 4-1.

Figure 4-1   Installation of Publish/Subscribe SupportPac (1 of 4) 

� Select Yes to continue as indicated in Figure 4-2.
30 MQSeries Publish/Subscribe Applications



Figure 4-2   Installation of Publish/Subscribe SupportPac (2 of 4) 

� MQSeries Publish/Subscribe files are copied in the destination standard 
folder, for example: C:\Program Files\MQSeries, where the software product 
of MQSeries was already installed. Click Next to continue your installation of 
MQSeries Publish/Subscribe in this directory, as illustrated in Figure 4-3.

Figure 4-3   Installation of Publish/Subscribe SupportPac (3 of 4) 
 Chapter 4. The publish/subscribe application 31



� Click Finish to confirm to terminate the installation as indicated in Figure 4-4.

Figure 4-4   Installation of Publish/Subscribe SupportPac (4 of 4) 

You have now successfully installed MQSeries Publish/Subscribe for Windows 
2000.

4.2.2  JMS installation
To work with JMS, we must install the Java classes that implement the JMS 
interfaces defined by Sun. To make an analogy with databases, these classes 
can be thought of as a driver, not a JDBC driver but a JMS driver. The JMS 
classes for MQSeries are delivered in the free MA88 SupportPac. This 
SupportPac contains the MQSeries classes for Java (MQI) and the MQSeries 
classes for Java Messaging Service (JMS).

MA88 can be downloaded from the MQSeries internet URL:

http://www.software.ibm.com/ts/mqseries/txppacs/ 

You can download the appropriate version for your platform and install it 
following the installation instructions provided with the SupportPac.

For Windows 2000, we download the file ma88_win, uncompress it and start the 
setup.exe program. Figure 4-5 shows the welcome window of the installation.
32 MQSeries Publish/Subscribe Applications

http://www.software.ibm.com/ts/mqseries/txppacs/ 


Figure 4-5   Installation of MA88 (1 of 4) 

Click Next and choose between the Complete or the Custom installation.

Figure 4-6   Installation of MA88 (2 of 4) 
 Chapter 4. The publish/subscribe application 33



Unless you have installed MQSeries using the default directories, you must 
choose the Custom installation to specify the right directories where the new 
Java classes should be installed. Even if you have installed MQSeries in the 
default directory, we recommend that you choose the Custom option in order to 
check the installation directory.

After clicking Next, you can choose which Java classes you want to install, the 
MQSeries classes for Java or for JMS or both, as shown in Figure 4-7 on 
page 34.

Figure 4-7   Installation of MA88 (3 of 4) 

In our case we install both MQSeries classes. If MQSeries is installed in the 
default directory (for example C:\Program Files\IBM\MQSeries), you don’t need 
to change the installation directory and can leave the default installation path (for 
example C:\Program Files\IBM\MQSeries\Java\). However we recommend that 
you check that the directory to which the Java classes will be installed 
corresponds to the existing Java subdirectory in your MQSeries installation 
directory.

If MQSeries has been installed into another directory, for instance C:\MQ52, then 
you must change the installation directory to C:\MQ52\Java\ as shown in 
Figure 4-8.
34 MQSeries Publish/Subscribe Applications



Figure 4-8   Installation of MA88 (4 of 4) 

Click Next one last time and the MA88 SupportPac is installed automatically.

Once the installation has completed, and in order to run publish/subscribe 
applications with JMS, you need to run an MQSC script, MQJMS_PSQ.mqsc, on 
the queue manager that you are using to define the MQSeries queues required 
for JMS in its publish/subscribe mode.

This script is located in the bin subdirectory of the directory where we installed 
the MA88 SupportPac, for example C:\Program Files\IBM\MQSeries\Java\bin or 
C:\MQ52\java\bin.

To run the script on the default queue manager, execute the following command:

runmqsc < "C:\Program Files\IBM\MQSeries\Java\bin\MQJMS_PSQ.mqsc"

where C:\Program Files\IBM\MQSeries is the MQSeries installation directory.

Note: During the installation of MA88, all the files present in the Java 
subdirectory of the MQSeries installation directory are placed in a backup 
directory and replaced with the new files contained in the SupportPac. 
Therefore, it is important that the AMI SupportPac is installed only after the 
installation of MA88. Otherwise, the JAR file containing the AMI Java classes 
may no longer be found in the classpath environment variable after the 
installation has completed.
 Chapter 4. The publish/subscribe application 35



This script creates the following queues:

� SYSTEM.JMS.ADMIN.QUEUE: the JMS publish/subscribe administration 
queue.

� SYSTEM.JMS.PS.STATUS.QUEUE: the JMS publish/subscribe subscriber 
status queue.

� SYSTEM.JMS.REPORT.QUEUE: the JMS publish/subscribe report queue

� SYSTEM.JMS.MODEL.QUEUE: the JMS publish/subscribe subscribers 
model queue. (This model queue is used by subscribers to create a 
permanent queue for subscriptions.)

� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE: the JMS publish/subscribe default 
non-durable shared queue. (The default shared queue used by non-durable 
subscribers.)

� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE: the JMS publish/subscribe 
default non-durable shared queue for connectionconsumer functionality.

� SYSTEM.JMS.D.SUBSCRIBER.QUEUE: the JMS publish/subscribe default 
durable shared queue. (The default shared queue used by durable 
subscribers.)

� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE: the JMS publish/subscribe 
Default durable shared queue for connectionconsumer functionality.

The installation part of the MQSeries classes for Java and JMS is now complete. 
In the next section, we introduce JMS and explain how to use it.

4.2.3  JMS overview
In this section, we will briefly describe the various concepts introduced by JMS. 
For more information on JMS, please refer to Using Java, SC34-5456.

JMS is an API specification defined by Sun to enable application portability. It is 
part of the J2EE specification. The JMS interfaces defined by the specification 
are contained in the Java package javax.jms. This package not only contains the 
Java interfaces but also a few Java classes, such as the JMSException class.

Figure 4-9 on page 37 illustrates the interfaces included in the JMS package.
36 MQSeries Publish/Subscribe Applications



Figure 4-9   The JMS interface hierarchy 
 Chapter 4. The publish/subscribe application 37



JMS defines two messaging domains, the point-to-point domain and the 
publish/subscribe domain, and both domains are supported by the MQSeries 
implementation of the JMS standard.

The six base interfaces defined by JMS are:

� The Connection interface provides access to the underlying transport and 
contains the parameters to connect to the queue manager.

� The Session interface is created from a Connection and corresponds to an 
MQSeries connection to a queue manager. It provides a transactional scope.

� The Destination interface encapsulates provider-specific addresses, since 
JMS does not define a standard address syntax. In MQSeries terms, it 
provides the information necessary to find a queue on the queue manager.

� The MessageProducer interface is created from a session by specifying the 
Destination and is used to send messages.

� The MessageConsumer interface is created from a session by specifying the 
Destination and is used to receive messages. It corresponds to an MQSeries 
input queue.

� The Message interface is created from a session and is used in a subclassed 
form for sending as well as for receiving messages.

The generic Connection, Session, MessageProducer and MessageConsumer 
interfaces are implemented by other interfaces specific to one of the two 
messaging domains as shown in Table 4-1.

Table 4-1   Interface correspondence across messaging domains

To ensure portability and independence from implementation providers, a 
Connection is obtained from a ConnectionFactory encapsulating a set of 
connection configuration parameters that have been defined by a JMS 
administrator. JMS establishes the convention that connection factories and 
other JMS administered objects are found by looking them up in a JNDI 
namespace. 

Generic interface point-to-point publish/subscribe

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

Destination Queue Topic

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber
38 MQSeries Publish/Subscribe Applications



This means that we must first register the parameters specific to an 
implementation of JMS by a provider into a JNDI server: a directory server (for 
example LDAP server) or a name server (for example the Persistent Name 
Server provided by WebSphere and VisualAge for Java). In other words, we start 
by serializing the ConnectionFactory object.

Once registered, we can retrieve this information in a JMS program by looking it 
up in the JNDI namespace. In other words, we deserialize the 
ConnectionFactory and other JMS administered objects that had previously been 
serialized by JNDI.

Equivalent steps are taken for destination; queue and topic are stored and 
retrieved in and from JNDI.

JMS providers, such as MQSeries, are expected to provide the tools an 
administrator needs to create and configure administered objects in a JNDI 
namespace. MQSeries provides a tool called the MQ JMS administration tool or 
JMSAdmin to store the ConnectionFactory (QueueConnectionFactory or 
TopicConnectionFactory) and the destination (queue or topic) in the JNDI 
namespace. This tool is a Java application contained in the class 
com.ibm.mq.jms.admin.JMSAdmin, which can be launched with the 
JMSAdmin.bat file located in the directory C:\Program 
Files\IBM\MQSeries\Java\bin, where C:\Program Files\IBM\MQSeries is the 
MQSeries installation directory.

4.2.4  JMS configuration, JNDI and JMSAdmin

Setting up VisualAge for Java for use with JMS
We are using VisualAge for Java Version 3.5.3, but previous versions of 
VisualAge for Java should work as well.

Here are the steps to follow to work with JMS in VisualAge for Java Enterprise 
Edition:

1. Make sure the features IBM Enterprise Extension Libraries and IBM 
WebSphere Test Environment are loaded in the workspace.

2. Create a new project. We call it MQ.

Important: VisualAge for Java Enterprise Edition and WebSphere Application 
Server provide a Persistent Name Server that can be used as JNDI server. 
Since as we are using VisualAge for Java for our programming and 
WebSphere Application Server for running the Web part of our application, we 
decided to use them also as the JNDI provider.
 Chapter 4. The publish/subscribe application 39



3. Import in this project the JAR files mentioned hereafter from the directory 
C:\Program Files\IBM\MQSeries\Java, where C:\Program 
Files\IBM\MQSeries is the MQSeries installation directory. Figure 4-10 
illustrates this import.

– com.ibm.mq.jar

– com.ibm.mqbind.jar

– com.ibm.mqjms.jar

– com.ibm.mq.iiop.jar

Figure 4-10   Import of JAR files in VisualAge for Java (1 of 2) 

4. You should also import the following packages in your project, but depending 
on the version of VisualAge the packages could be added automatically in 
other projects provided by VisualAge for Java:

– jms.jar

– jndi.jar

– ldap.jar

– fscontext.jar

– providerutil.jar
40 MQSeries Publish/Subscribe Applications



Once all the JAR files have been imported, you should have a project similar 
to the project MQ shown in Figure 4-11.

Figure 4-11   Import of jar files in VisualAge for Java (2 of 2) 

� Add the directory C:\Program Files\IBM\MQSeries\Java, where C:\Program 
Files\IBM\MQSeries is the MQSeries installation directory, to the workspace 
classpath. You can access the workspace classpath from the Workbench of 
VisualAge for Java by clicking Window -> Options... -> Resources.
 Chapter 4. The publish/subscribe application 41



Figure 4-12 illustrates this step.

Figure 4-12   Changing the workspace classpath 

5. If you want to use the binding mode when accessing the queue manager, the 
path environment variable must include the directory C:\Program 
Files\IBM\MQSeries\Java\bin, where C:\Program Files\IBM\MQSeries is the 
MQSeries installation directory. This directory contains the mqjbnd02.dll file 
required for using the binding mode. The path environment variable must be 
set before starting VisualAge for Java.

Using JNDI in VisualAge for Java
The following steps describe how to use the Persistent Name Server in 
VisualAge for Java.

1. The use of the Persistent NameServer requires a database server to be 
accessible by VisualAge with JDBC. We are using DB2 Universal Database 
and have created a database named jndi. The workspace classpath must 
contain the JDBC APIs delivered with the database. When using DB2, we 
must add C:\SQLLIB\java\db2java.zip to the VisualAge for Java workspace 
classpath, where C:\SQLLIB is the installation folder of DB2.

2. Start the WebSphere Test Environment by clicking Workspace -> Tools -> 
WebSphere Test Environment.

3. Select the Persistent Name Server and enter the configuration parameters to 
connect to a database. Figure 4-13 on page 43 illustrates how to connect to 
the DB2 database named jndi.
42 MQSeries Publish/Subscribe Applications



Figure 4-13   Persistent Name Server (1 of 2) 

4. Start the Name Server by clicking Start Name Server. If the Name Server 
has started successfully, you should see a WebSphere Test Environment 
comparable to the one displayed in Figure 4-14.

Figure 4-14   Persistent Name Server (2 of 2) 
 Chapter 4. The publish/subscribe application 43



Using JMSAdmin with VisualAge for Java
In this section, we explain how to create the connection factories and Destination 
JMS objects in the JNDI namespace with the JMSAdmin administration tool 
provided by MQSeries.

We start by updating the JMSAdmin.config file to indicate to the JMSAdmin 
application that it must use our Persistent Name Server. This file is located in the 
directory C:\Program Files\IBM\MQSeries\Java\bin, where C:\Program 
Files\IBM\MQSeries is the MQSeries installation directory. We must change the 
following two entries in this file:

� INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

This value is valid for the Persistent Name Server provided by VisualAge for 
Java Enterprise Edition and by WebSphere Application Server. For other 
JNDI servers, the INITIAL_CONTEXT_FACTORY variable must be provided 
in the accompanying documentation.

� PROVIDER_URL=iiop://hostname/

Where hostname is the name of the machine where the Persistent Name 
Server is running. When the Internet Inter-ORB Protocol (IIOP) is used, the 
default port is 900 and doesn’t need to be specified. If you change the default 
port of the Persistent Name Server as shown in Figure 4-14 on page 43 in the 
bootstrap port field, you must indicate the port in the PROVIDER_URL 
variable, for example iiop://hostname:901/.

When we imported all the MQSeries classes for Java and JMS as described in 
“Setting up VisualAge for Java for use with JMS” on page 39, we also imported at 
the same time the JMSAdmin application included in the package 
com.ibm.mq.jms.admin. Which means that we can easily run this administration 
tool from VisualAge for Java itself, after completing the next two steps:

1. Copy the JMSAdmin.config file in the Project Resources of the project we 
created in “Setting up VisualAge for Java for use with JMS” on page 39 or 
update the workspace classes to include the directory C:\Program 
Files\IBM\MQSeries\Java\bin.

2. Right-click the JMSAdmin class, as shown in Figure 4-15 on page 45, and 
choose Properties and Classpath.
44 MQSeries Publish/Subscribe Applications



Figure 4-15   JMSAdmin (1 of 4) 

Make sure the project path includes both the IBM Enterprise Extension 
Libraries and the IBM WebSphere Test Environment as illustrated in 
Figure 4-16 on page 46. Use the Edit button to add these two projects if 
needed.
 Chapter 4. The publish/subscribe application 45



Figure 4-16   JMSAdmin (2 of 4) 

We are now ready to start the JMSAdmin application in VisualAge for Java. This 
causes the console window of VisualAge to pop up, because the JMSAdmin 
application is an interactive application waiting for us to input a command. These 
administration commands are documented in the MQSeries book, Using Java, 
SC34-5456.

Our first step is to create a context, which can be thought of as a directory in the 
JNDI namespace. We create a context named “jms” by entering the following 
command: def ctx(jms) in the Standard In window pane of the console. To 
check the result, we can display the current or initial context with the command 
dis ctx. The output of this command is displayed in Figure 4-17 on page 47.
46 MQSeries Publish/Subscribe Applications



Figure 4-17   JMSAdmin (3 of 4) 

We see that there are currently two defined contexts in our initial context: jms, 
the one we created, and jta, a context we are not concerned with at the present 
time.

To change from the initial context and pass into the newly created jms context, 
we can execute the command chg ctx(jms) displayed in the Standard In input 
area in Figure 4-17. This context is currently empty.

We will now create our JMS administered objects, which will allow us to work 
with JMS. Since this book is focusing on publish/subscribe and not on JMS, we 
will only discuss the publish/subscribe related objects. The point-to-point objects 
are created in a very similar way, simply by changing the type of object created, 
for example replacing a topic with a queue.
 Chapter 4. The publish/subscribe application 47



As already discussed in the 4.2.3, “JMS overview” on page 36, the first object we 
need to create in JNDI is a ConnectionFactory containing the information 
required by a JMS application to be able to connect to an MQSeries queue 
manager.

In the publish/subscribe messaging domain, we refer more specifically to a 
TopicConnectionFactory. The following command creates a 
TopicConnectionFactory (tcf) called ITSOPS, referring to a queue manager ITSO 
running on the host machine ITSO and listening on the TCP/IP port 1415, with a 
connection in client mode through the server connection channel named 
JVACHL, with a broker installed on that same queue manager. The broker 
control queue and publication queue specified are the default values for the 
MQSeries Publish/Subscribe broker.

def tcf(ITSOPS) transport(CLIENT) QMANAGER(ITSO) HOST(ITSO) PORT(1415) 
CHANNEL(JVACHL) BROKERQMGR(ITSO) BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE) 
BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)

We can also create another TopicConnectionFactory called ITSOPSBND, 
containing exactly the same information but defined for a connection in binding 
mode rather than in client mode. ITSOPSBND is created with the following 
command:

def tcf(ITSOPSBND) transport(BIND) QMANAGER(ITSO) BROKERQMGR(ITSO) 
BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE) 
BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)

It is important to understand that what these commands really do is write in a 
database the information necessary to connect to a queue manager so that it can 
be retrieved in a portable way by JNDI to be used in a JMS application. All this 
has no influence on the current configuration of MQSeries.

Additionally, we can also define the JNDI topic (t) objects Accident and 
Breakdown with the following commands:

def t(Accident) topic(PublicTransport/Alerts/Accidents)
def t(Breakdown) topic(PublicTransport/Alerts/Breakdowns)

Figure 4-18 on page 49 displays these commands executed by the JMSAdmin 
application.
48 MQSeries Publish/Subscribe Applications



Figure 4-18   JMSAdmin (4 of 4) 

To end the JMSAdmin program, simply enter the end command.

Using JMSAdmin with WebSphere Application Server
We can also start the JMSAdmin tool from the command line with the 
JMSAdmin.bat file provided with MA88 and using, for instance, WebSphere 
Application Server as the JNDI provider. We don’t repeat here the description of 
JMSAdmin, since its configuration parameters and commands were already 
described in “Using JMSAdmin with VisualAge for Java” on page 44.

For WebSphere Application Server to work as a Persistent Name Server, nothing 
needs to be done. When the WebSphere AdminServer is up and running, we can 
access it as a Persistent Name Server. The database used is the database 
serving for the WebSphere Application Server repository.
 Chapter 4. The publish/subscribe application 49



In the previous section, we said that the JMSAdmin program could be run from 
VisualAge for Java. It is also possible to run it directly from the command line 
with theJMSAdmin.bat file, available in the directory C:\Program 
Files\IBM\MQSeries\Java\bin, where C:\Program Files\IBM\MQSeries is the 
MQSeries installation directory. When starting the JMSAdmin with the bat file 
from the DOS command line, you can run it in batch mode by specifying a script 
file containing all the JMSAdmin commands. Before starting JMSAdmin.bat, you 
must:

1. Edit the configuration file JMSAdmin.config in the same directory

As the Persistent Name Server provided by VisualAge for Java and 
WebSphere Application Server are similar, we must make the same changes 
in the configuration file JMSAdmin.config as those previously done for 
VisualAge for Java to make sure we can connect to the Persistent Name 
Server:

– INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

– PROVIDER_URL=iiop://hostname/

Where hostname is the name of the machine where the AdminServer is 
running. If the default port (900) has been changed to, for instance, 901, it 
must be specified as in the following statement: 
PROVIDER_URL=iiop://hostname:901/

2. Adapt or verify the following environment variables:

– CLASSPATH: it must contain the three following packages:

• C:\Program Files\IBM\MQSeries\Java\lib\jms.jar, where C:\Program 
Files\IBM\MQSeries is the MQSeries installation directory

• C:\Program Files\IBM\MQSeries\Java\lib\com.ibm.mqjms.jar

• C:\WebSphere\AppServer\lib\ujc.jar, where C:\WebSphere\AppServer 
is the WebSphere Application Server installation directory

– PATH: it must contains a JDK (Java Development Kit) or JRE (Java 
Runtime Environment). We can use the JRE provided with WebSphere 
Application Server by adding the directory 
C:\WebSphere\AppServer\jdk\jre\bin in the PATH environment variable, 
where C:\WebSphere\AppServer is the WebSphere Application Server 
installation directory.

– MQ_JAVA_INSTALL_PATH: this environment variable is used in the 
provided JMSAdmin.bat file. In order to use this bat file without any 
modification, you need to define this variable either in your system or at 
least in the command line prompt where JMSAdmin is run. 
MQ_JAVA_INSTALL_PATH must be set to C:\Program 
Files\IBM\MQSeries\Java\lib where C:\Program Files\IBM\MQSeries is the 
MQSeries installation directory.
50 MQSeries Publish/Subscribe Applications



3. Create a script file containing the JMSAdmin commands to be run if you want 
to run JMSAdmin in batch mode. For instance, we create a file 
JMSAdmin.scp containing the following commands:

def ctx(jms)
chg ctx(jms)
del tcf(ITSOPS)
del tcf(ITSOPSBND)
del t(AccidentMQ)
del t(BreakdownMQ)
del t(AccidentJMS)
del t(BreakdownJMS)
def tcf(ITSOPS) transport(CLIENT) QMANAGER(ITSO) HOST(ITSO) PORT(14141) 
CHANNEL(JVACHL) BROKERQMGR(ITSO) BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE) 
BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)
def tcf(ITSOPSBND) transport(BIND) QMANAGER(ITSO) BROKERQMGR(ITSO) 
BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE) 
BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)
def t(AccidentJMS) topic(PublicTransport/Alerts/Accidents)
def t(BreakdownJMS) topic(PublicTransport/Alerts/Breakdowns)
def t(AccidentMQ) topic(PublicTransport/Alerts/Accidents) TARGCLIENT(MQ)
def t(BreakdownMQ) topic(PublicTransport/Alerts/Breakdowns) TARGCLIENT(MQ)
def t(Alert) topic(PublicTransport/Alerts/*)
def t(PublicTransport) topic(PublicTransport/*)
end

It is important not to forget the end command if you want to end the 
JMSAdmin tool properly.

4. Make sure that the WebSphere Administration Server is started. You can 
verify that the default port 900 is listening with the command netstat -a on 
the command line.

When all configuration steps are executed, we start the JMSAdmin tool:

� In interactive mode: by running JMSAdmin.bat

� In batch mode: redirecting the standard input by running the command 
JMSAdmin.bat < JMSAdmin.scp 

Tip: If you prefer not to change the environment variables on your system, you 
don’t need to. You can simply include the SET commands to change them 
directly in the batch file.
 Chapter 4. The publish/subscribe application 51



4.2.5  Defining MQSeries required for the application
In order to run the Public Transport application, a few MQSeries objects (queues 
and server connection) must be created. In the additional material accompanying 
this book, we provide the MQSC script called vehicle.mqsc containing the 
definitions for these objects. You should run this script against a queue manager. 
You may decide to create a new queue manager or to use an existing one. Run 
the script with the command runmqsc QMGR_NAME < vehicle.mqsc, where 
QMGR_NAME is the name of the queue manager. If you want to create these objects 
on the default queue manager, you can use the command runmqsc < 
vehicle.mqsc.

4.2.6  AMI overview
The Application Messaging Interface (AMI) API is one of the latest additions to 
the MQSeries API portfolio, AMI has very interesting features and a different 
approach. Given that AMI will be used extensively throughout the book, we 
provide a very brief overview of its most important aspects. Complete information 
about this API can be found in MQSeries Application Messaging Interface, 
SC34-5604.

Key features and concepts
The key features of AMI are:

� Provides a higher level, easy-to-use interface to messaging.

� Reduces to a minimum the number and complexity of data structures and 
parameters.

� Increases the number of API verbs in order to accommodate each messaging 
style (send and forget, request/reply, publish/subscribe) in the best way.

� Provides reasonable API structure for procedural languages like C and 
COBOL, as well as object-oriented ones like C++ and Java.

� Moves middleware-specific options out of the application domain and into the 
administration domain by using an external persistent repository.

� Interoperates seamlessly with any other MQSeries messaging API flavor (for 
example Java JMS, and RPG MQI).

The AMI structure and concepts revolve around three main entities: services, 
policies and messages. Let’s review each of them in turn:

� A service is the abstraction of an MQSeries queue, assuming that a queue 
hosts semantically homogeneous sets of messages being consumed 
(served) by an application to satisfy a business need. 
Service definitions are stored in the repository.
52 MQSeries Publish/Subscribe Applications



� A policy is a collection of attributes that define how to handle messages from 
a quality-of-service point of view (for example priority, persistence, 
acknowledgement level), from a recovery point of view (for example error 
handling, and retries) or a housekeeping point of view (for example 
expiration).
Policy definitions are stored in the repository.

� A message is an object containing the actual application data and some 
ancillary attributes (for example a correlation identifier or coded character set 
identifier) that the typical application can often safely ignore.

API set structure
In this section we briefly describe the main objects of the object-oriented flavors 
of AMI (C++ and Java). A specific discussion of the C procedural flavor 
peculiarities can be found in 4.6.1, “Vehicle C AMI program” on page 81 where 
we explain the C version of the sample Vehicle program.

The most important class is AmSession. This class creates and manages all 
other objects providing also the transactional scope for units of work. Session 
objects are created using the AmSessionFactory class.

The Connection object is administered via the repository and is not exported at 
the application level. It deals with the details of how to actually connect to the 
messaging service provider.

The AmMessage object wraps the MQSeries message descriptor and other 
optional headers (for example, MQRFH rules and formatting header or MQRFH2 
rules and formatting header). Application data may be stored within or outside 
the amMessage object instance.

The AmPolicy object wraps all options needed at open, close, send, receive, 
publish, subscribe times. There are several methods that can be used to override 
policy defaults (for example, setWaitTime for setting message reception timeout).

The last object is the Service object. There are five types of service:

� AmSender is the abstraction of an MQSeries output queue. It contains the 
actual message send method.

� AmReceiver is the abstraction of an MQSeries input queue. It contains the 
actual message receive method.

� AmDistributionList is a collection of AMI amSender objects. The main 
exported method is send.

� AmPublisher contains an AmSender object and is used to send publication 
messages to a publish/subscribe broker via the publish method.
 Chapter 4. The publish/subscribe application 53



� AmSubscriber contains an AmSender object (used to send subscription 
requests to a publish/subscribe broker) and an AmReceiver object (used to 
actually receive publication messages forwarded by the broker). The main 
methods exported are subscribe, unsubscribe, and receive.

Facilities for publish/subscribe messaging
AMI is a very convenient API to use when implementing MQSeries 
Publish/Subscribe applications because it actually shields the developer from the 
mundane tasks of formatting and parsing broker headers, coping with the 
versioning of those headers (for example, MQSeries Integrator supports the 
MQRFH2 header, which is far more complex than the MQRFH header supported 
by MQSeries Publish/Subscribe).

Even if much of the complexity is shielded from the developers, sophisticated 
publish/subscribe applications can still access fringe features through lower-level 
API calls adding specific elements to headers.

Repository
The AMI repository is used to store policy definitions, service definitions and 
service point definitions. Even if an AMI application can function without the 
repository (out of built-in defaults), the typical application will use one, in order to 
exploit its many benefits.

The repository is an XML file that is administered using the provided AMI Tool, a 
Java-based GUI currently running only on the Windows NT platform. This is not a 
big limitation given that the repository file can be shared between different 
platforms using standard file-sharing facilities or replicated via file transfer.

An alternative way of accessing the repository at runtime is via an LDAP server. 
This feature is supported only by AMI Version 1.2. The supported LDAP 
providers are Microsoft Active Directory (Windows NT/2000 only), IBM 
SecureWay, and DB2.

Runtime access to an LDAP directory is not supported on OS/390, but users will 
be able to build a local static cache (AMI 1.1 style) from data on an LDAP 
directory.

A typical application pattern in MQSeries is to have several queue managers 
hosted on different machines that are isomorphic (that is, the same queue 
names, same processes, same channels, same applications serving the same 
queues) except for the queue manager names that must be distinct to make 
intercommunication possible.
54 MQSeries Publish/Subscribe Applications



This pattern is easily accommodated by AMI. In fact you can make the repository 
definitions that are symbolic with respect to queue manager names (this way the 
definitions can be shared among the isomorphic queue managers), then you 
distribute a very small XML file on each machine named the AMI Host File, to 
define the mapping between the symbolic queue manager names in the 
repository and the real queue manager names on the machine, as locally 
applicable to that machine.

The advantage of this approach is that administration of more dynamic 
configuration information can be performed on the central repository image (a 
shared XML file or an LDAP directory), while the information locally stored on 
each machine is only of a highly static nature.

Applications can point to a particular repository or host using 
AmSessionFactory.setRepository and AmSessionFactory.setLocalHost 
methods. For C language applications, a similar functionality is available only via 
environment variables. An AMI installation provides default locations for both 
repository and AMI host file.

Policy handlers
AMI 1.2 on the non-z/OS and OS/390 platforms supports a new feature named 
Policy Handlers. A policy handler is basically a user exit that is called by the AMI 
kernel at certain stages of the API computation.

The user-implemented handlers are passed context information and can modify 
it as appropriate. Applications of this feature are:

� Message logging/auditing

� Message encryption/decryption

� Message compression/decompression

� Message header and/or message body data

� Interfacing with other transports (for example MQSeries messages forwarded 
as SMTP messages)

Policy handlers can only be written in C.
 Chapter 4. The publish/subscribe application 55



Platforms and languages currently available
Table 4-2 shows the platforms and languages where AMI is currently available.

Table 4-2   AMI language matrix

The AMI package can be downloaded as a SupportPac from the IBM Web site. 
The only exception to this is AMI for OS/390, which is built into the MQSeries for 
OS/390 V5.2 product.

4.2.7  AMI installation

In this section we describe the steps required to install the MQSeries Application 
Messaging Interface (AMI). AMI is available as an additional component. We 
describe here the installation for the Windows NT and 2000 platform:

1. Go to the following Web site:

http://www.software.ibm.com/ts/mqseries/txppacs/

2. Select the SupportPac MA0F.

3. Click the ma0f_nt.zip icon to download the MQSeries AMI for Windows 2000 
in InfoZip compressed format.

Operating System AMI C/C++ AMI Java AMI Cobol

IBM AIX Yes Yes No

Sun Solaris Yes Yes No

HP-UX (V11.0) Yes Yes No

IBM OS/400 Yes Yes No

Microsoft Windows 2000 Yes Yes No

Microsoft Windows NT Yes Yes No

Microsoft Windows 98 Yes Yes No

Microsoft Windows ME Yes Yes No

IBM z/OS and OS/390 Yes No Yes

Note: if you plan to install the SupportPac MA88 containing the Java and JMS 
classes for MQSeries, you should install it before installing the SupportPac 
MA0F containing the AMI support. Installing MA88 after MA0F may cause the 
AMI Java classes to no longer be included in the classpath.
56 MQSeries Publish/Subscribe Applications

http://www.software.ibm.com/ts/mqseries/txppacs/


4. To install the AMI you need to uncompress the download file maof_nt.zip into 
a temporary directory, make it current and then execute the setup.exe 
program.

5. Click Next to install the AMI as shown in Figure 4-19.

Figure 4-19   Installation of MQSeries AMI (1 of 6) 

6. If you don’t want to type a new folder name, click Next to continue your 
installation with the standard program folder IBM MQSeries AMI as indicated 
in Figure 4-20.
 Chapter 4. The publish/subscribe application 57



Figure 4-20   Installation of MQSeries AMI (2 of 6) 

7. Choose No to continue as illustrated in Figure 4-21.

Figure 4-21   Installation of MQSeries AMI (3 of 6) 

8. Click OK to continue your installation as displayed in Figure 4-22.

Figure 4-22   Installation of MQSeries AMI (4 of 6) 
58 MQSeries Publish/Subscribe Applications



9. Click OK again to finish your installation of MQSeries Application Messaging 
Interface as shown in Figure 4-23.

Figure 4-23   Installation of MQSeries AMI (5 of 6)

Choose No, I will restart my computer later to finish your installation, as 
indicated in Figure 4-24.

Figure 4-24   Installation of MQSeries AMI (6 of 6).

Once you have successfully installed the MQSeries Application Messaging 
Interface (AMI), you still need to set up the AMI sample script. 

1. To set up the AMI sample script (amtsamp.tst) which is located in the 
subdirectory of your AMI standard installation you need to change the 
MQSeries subdirectory where your AMI was installed, for example 
C:\Program Files\MQSeries\amt\samples.

2. To run the sample script on the queue manager named YourQueueManager, 
use the following command: runmqsc YourQMgrName < amtsamp.tst 

3. Your AMI system is now ready for your publish/subscribe applications.
 Chapter 4. The publish/subscribe application 59



4.2.8  AMI configuration
We use the Application Messaging Interface (AMI) Administration Tools for 
configuring the services and policies for our publish/subscribe application that we 
call Global public transport system. The AMI Administration Tools allow you to 
define AMI objects and save them in an AMI repository. This AMI repository is an 
XML file. It is by default called amt.xml and located in the directory C:\Program 
Files\IBM\MQSeries\amt, where C:\Program Files\IBM\MQSeries is the 
installation folder of MQSeries.

In this section, we describe how to define some of the AMI objects used by our 
application with the AMI Administration Tools but you don’t have to go through all 
these steps for using our application. In the additional materials provided with 
this book, we provide an AMI repository file (amt.xml) containing all the 
definitions used by our application. Please see Appendix E, “Additional material” 
on page 211.

On the Windows 2000 platform, the AMI Administration Tools has two option 
panes. The left-hand navigation pane is used to select a customer application 
service (service points, distribution lists, subscribers and publishers) and 
customer application policy. The right-hand pane is used to set, update or display 
your input parameters for customer applications of the selected service or policy.

Using the AMI administration facility, we define and configure the 
publish/subscribe service and the policy. For the simplest version of our 
application, we performed the following tasks: 

� Service for AMI application administrator:

– Creation of the new service point for the Global public transport system 
application using the publish/subscribe facility.

– Creation of the new subscribers for this application and parameter inputs 
for the sender service and receiver service.

– Creation of the new publishers and parameter inputs for the sender 
service

� Policy for AMI application administrator:

– Creation of the new policy for our transport application and specification of 
the following sets of application properties attributes: Initiation, general, 
send, receive, publish and subscribe.
60 MQSeries Publish/Subscribe Applications



To start the AMI Administration Tool, in the left pane of the Windows 2000 
window, click Start -> Program -> IBM MQSeries AMI -> IBM MQSeries AMI 
Administration Tool. You see the first window of the AMI Administration Tool 
(Figure 4-25).

Figure 4-25   AMI administration Tool (1 of 18) 

Service point options for AMI application administrator
To create a new service point for your customer application, select Service 
Points -> Create a new Service Point (see Figure 4-26 on page 62). 
 Chapter 4. The publish/subscribe application 61



Figure 4-26   Create a new AMI service point (2 of 18) 

We created the following new service points for our application (see Figure 4-27 
on page 63):

� VEHICLE.RECEIVER 

� VEHICLE.POSITION.PUBLISHER

� BROKER.CONTROL.QUEUE

� VEHICLE.ALERT.PUBLISHER
62 MQSeries Publish/Subscribe Applications



Figure 4-27   AMI administration for application (3 of 18) 

We specified the application parameters for the service point of 
VEHICLE.RECEIVER (see Figure 4-28).

Figure 4-28   Parameters for AMI service point (4 of 18) 
 Chapter 4. The publish/subscribe application 63



Subscriber options for AMI application administrator
We created the new subscribers for our transport application and specified the 
input parameters for the sender service BROKER.CONTROL.QUEUE and 
receiver service VEHICLE.RECEIVER for the properties of our subscribers 
VEHICLE.SUBSCRIBER (see Figure 4-29).

Figure 4-29   Create a new AMI subscriber (5 of 18) 

For our transport application, we specified the following input parameters for the 
subscribers VEHICLE.SUBSCRIBER for our application: the sender service is 
BROKER.CONTROL.QUEUE and the receiver service is VEHICLE.RECEIVER 
(see Figure 4-30).
64 MQSeries Publish/Subscribe Applications



Figure 4-30   AMI Subscriber: sender service (6 of 18) 

We specified the input parameters for the receiver service (see Figure 4-31).
 Chapter 4. The publish/subscribe application 65



Figure 4-31   AMI Subscriber: receiver service (7 of 18) 

Publisher options for AMI application administrator
For our application, we created two new publishers (see Figure 4-32):

� VEHICLE.ALERT.PUBLISHER

� VEHICLE.POSITION.PUBLISHER

Figure 4-32   Create a new AMI publisher (8 of 18)
66 MQSeries Publish/Subscribe Applications



In this step, we created two new publishers for our application: 
VEHICLE.ALERT.PUBLISHER and VEHICLE.POSITION.PUBLISHER.

We created the sender service of the publisher VEHICLE.ALERT.PUBLISHER 
(see Figure 4-33).

Figure 4-33   AMI Publisher: sender service (9 of 18) 

We used the standard queue SYSTEM.BROKER.DEFAULT.STREAM for our 
sender service of the publishers VEHICLE.ALERT.PUBLISHER and 
VEHICLE.POSITION.PUBLISHER (see Figure 4-34).
 Chapter 4. The publish/subscribe application 67



Figure 4-34   AMI Publisher: Parameters of sender service (10 of 18) 

Policy options for AMI application administrator
For our application called Global public transport system, we created three AMI 
policies (see Figure 4-35 on page 69):

� VEHICLE.SUB.POLICY

� VEHICLE.POSITION.PUB.POLICY

� VEHICLE.ALERT.PUB.POLICY
68 MQSeries Publish/Subscribe Applications



Figure 4-35   Create a new AMI policy (11 of 18)

We had three policies: VEHICLE.SUB.POLICY, 
VEHICLE.POSITION.PUB.POLICY, AND VEHICLE.ALERT.PUB.POLICY (see 
Figure 4-36).

Figure 4-36   Parameters of AMI policy (12 of 18)

Each standard AMI policy has the following tabs: Initialization, General, Send, 
Receive, Publish, Subscribe and Description. 
 Chapter 4. The publish/subscribe application 69



AMI policy - initialization options for application
We set the parameters of the initialization options of the AMI policy for our 
application (see Figure 4-37).

Figure 4-37   AMI policy: Parameters of initialization options (13 of 18)

AMI policy - general options for application
We set the parameters of the general options of the AMI policy for our application 
(see Figure 4-38).

Figure 4-38   AMI policy: Parameters of general options (14 of 18) 

AMI policy - send options for application
We set the parameters of the send options of the AMI policy for our application 
(see Figure 4-39 on page 71).
70 MQSeries Publish/Subscribe Applications



Figure 4-39   AMI policy: Parameters of send options. (15 of 18) 

AMI policy - receive options for application
We set the parameters for the receive options for the application AMI policy (see 
Figure 4-40 on page 72).
 Chapter 4. The publish/subscribe application 71



Figure 4-40   AMI policy: Parameters of receive options. (16 of 18) 

AMI policy - publish options for application 
We set the parameters for the publish options for the application AMI policy (see 
Figure 4-41).

Figure 4-41   AMI policy: Parameters for publish options (17 of 18) 

AMI policy - subscribe options for application
We set the parameters for the subscribe options for the application AMI policy 
(see Figure 4-42 on page 73).
72 MQSeries Publish/Subscribe Applications



Figure 4-42   AMI policy: Parameters of subscribe options (18 of 18) 

4.3  PubLauncher
The publication part of the application is a stand-alone Java application. It reads 
all of its initialization parameters from a properties file called pubsub.properties 
and starts a thread for each vehicle on each route. A thread publishes all the 
messages, alerts (accidents or breakdowns) and positions for this vehicle.

Figure 4-43 on page 74 illustrates the global flow of the publication application.
 Chapter 4. The publish/subscribe application 73



Figure 4-43   Application flow of the publication side 

4.3.1  The properties file - pub.properties
This properties file contains the information specific to each publication module 
(JMS, C AMI, Java AMI, C MQI) and the parameters related to our business logic 
itself.

In this section, we discuss only the parameters related to the business logic and 
not the parameters specific to a publication method (JMS, AMI,...). These 
parameters are described in the section referring to the publication method itself.

Here are the entries found in the application part of the properties file:

pubType=1
nbrRoutes=3
nbrVehicles=3

##route1
route1=Tube/London/Piccadilly
route1NbrStops=4
route1TimeBetweenStops=4
route1Vehicle1=PiccaTrain01
route1Vehicle2=PiccaTrain02
route1Vehicle3=PiccaTrain03

##route 2
[similar to the definitions for route1]
74 MQSeries Publish/Subscribe Applications



nbrRoutes indicates the number of combinations between transport mode, 
geographical location and route we have created. Each route is then defined in 
the routei parameter, where i is the route number.

nbrVehicles is the number of vehicles that will serve each route. The design of 
our application only allows the same number of vehicles on each route. 

For each route, we now have to define the route name, the number of stops, the 
time spent between two stops, and optionally the name of the vehicles.

routei, where i is the route number starting at 1, represents the route name.

routeiNbrStops, where i is the route number, is the parameter defining the 
number of stops (for example, bus stops) made by a vehicle on each route. Each 
route can have a different number of stops.

routeiTimeBetweenStops, where i is the route number, represents the time in 
seconds spent by a vehicle on its way between two stops. 

Finally, each vehicle on each route can be given a name with the routeiVehiclej 
parameter, where i is the route number and j the vehicle number, all starting at 
1. If no names are specified, names are automatically generated based on the 
hostname where the publication is running and on the current time.

4.3.2  PubLauncher coding logic
We don’t explain the Java code used by the application extensively when it is not 
directly related to publish/subscribe functionalities. All the code can be found in 
Appendix E, “Additional material” on page 211. In this section we only show 
simplified code snippets when needed.

The PubLauncher is responsible for the three following tasks:

� Reading and parsing the properties file

� Starting the threads and providing them with the information from the 
properties file:

pubThread = new PubThread(info);

pubThread.start();

� Waiting for each thread to complete and terminate:

pubThread.join();

4.3.3  Starting the publication application
The application uses AMI (Java and C), JMS (Java) and MQI (C).
 Chapter 4. The publish/subscribe application 75



To use AMI, the AMI repository and AMI host file must be present.

To use JNDI, a JNDI namespace containing the required JMS administered 
objects must be available.

The application itself is made up of the following files:

� The pub.jar file contains all the Java classes created for the publication part.

� The pub.bat file you must edit this file to indicate the installation directories of 
MQSeries, WebSphere (if using JNDI) and of the publication installation itself.

� The pub.properties file may be edited to suit your needs.

� The ptVehicleAMI.exe and ptVehicleMQI.exe files are placed in a directory 
included in the path. On Windows NT and 2000, you can put them in 
C:\WINNT for instance.

After editing the pub.bat and pub.properties files, if necessary, run pub.bat to 
start the application.

4.4  PubThread
Each PubThread represents a vehicle on a route. The PubThread Java class 
extends the thread Java class. It receives the following information before 
starting:

� Business information:

– The route and the vehicle it represents.

– The number of stops along the route.

– The time spent by the vehicle between two stops.

� Publication information:

– The publication method chosen (JMS, Java AMI, C AMI, C MQI).

– The needed information relative to publication method (repository 
information for AMI, JNDI information for JMS, etc.). This point is covered 
in more detail in the section describing each publication method.

Once all PubThreads are created, they are started by the PubLauncher. At each 
stop, the thread publishes a position message and an accident or breakdown 
message depending on the situation.

We must make a distinction according to which publication method has been 
chosen in the properties file, either C (AMI or MQI) or Java (JMS or AMI).
76 MQSeries Publish/Subscribe Applications



In the first case, the PubThread calls a C executable file (ptVehicleAMI.exe or 
ptVehicleMQI.exe). PubThread consists here essentially of a Java wrapper 
around a C program. The logic of message generation and publication is 
delegated to the C program.

In the latter case, the PubThread creates the publication messages and 
publishes them directly through a JMS or AMI helper Java class.

Figure 4-44   PubThread 

Figure 4-44 illustrates the distinction of the logic flow for the generation of 
messages between the C and the Java implementation.

We have chosen to implement the publication application this way for simplicity. 
In our case, there is only one call to a C program in the thread (that is along a 
vehicle route) lifetime. If we had implemented C AMI or C MQI in the same way 
as Java AMI or Java JMS, we would have needed either to call a C program 
each time we wanted to publish a message, with an extra overload as a result, or 
we would have had to call a function in a C DLL file through the Java Native 
Interface (JNI), with a much more complex solution that was clearly outside the 
scope and focus of this book.

In the following subsection, we describe the class PubThread started by the 
PubLauncher.
 Chapter 4. The publish/subscribe application 77



4.4.1  PubThread coding logic
There are two important times in the lifetime of PubThread: when it is created 
and when it is started by the PubLauncher.

At creation time, that is in its constructor method, the thread receives the 
required information regarding the business logic (the vehicle and the route it 
represents, the characteristics of this route) and the publication logic (the 
publication method used, C or Java, AMI, JMS or MQI, and the information 
specific to the method used). Depending on the publication method chosen, the 
thread creates the appropriate publication helper class as shown in the following 
code:

switch (pubSubType) {
case Const.PUBSUB_JAVA_AMI: {

pubJava = new PubJavaAMI(amiInfo);
break;

}
case Const.PUBSUB_C_AMI: {

pubC = new PubCAMI(cInfo);
break;

}
case Const.PUBSUB_JMS: {

pubJava = new PubJMS(jmsInfo);
break;

}
case Const.PUBSUB_C_MQI: {

pubC = new PubCMQI(jmsInfo);
break;

}
}

At runtime, the thread is executing its run() method. This method distinguishes 
between C publication and Java publication. For an easier extension of the code, 
we created two Java interfaces PubJava and PubC, that are respectively 
implemented by the classes PubJMS, PubJavaAMI responsible for the JMS and 
Java AMI functionalities, and by the classes PubCAMI and PubCMQI, used for 
the C AMI and C MQI functionalities. While executing, the thread calls the 
method directly from the interface PubJava and PubC without worrying about 
which class is really doing the job.

If a C publication method is chosen, the thread delegates the job to the C 
program with the command pubC.exe(pubData). This exe() method is using the 
runtime of the Java Virtual Machine (JVM) to call an external program.

If a Java publication is used, the thread calls the PubJava interface methods:
78 MQSeries Publish/Subscribe Applications



� PubJava.open() to start the connection and session with the messaging 
service provider (in MQSeries terms, to get a connection handle to the queue 
manager).

� At each stop, it uses PubJava.publishPosition() to send a publication 
indicating the position of the vehicle and if one accident or breakdown has 
occurred, it uses the PubJava.publishAccident() or 
PubJava.publishBreakdown() to send an alert publication. The messages 
used are described in more details in 4.5, “The publication messages” on 
page 79.

4.5  The publication messages
In the design of our application, we decided that each vehicle publishes three 
different XML messages: one message to indicate its position, another message 
when it has an accident, and a third message when the vehicle has broken down.

Figure 4-45   The position publication message 

In Figure 4-45, we see the message generated by the publication application 
when a vehicle arrives at a given stop. The message indicates at what time the 
vehicle has reached which stop and it also contains some complementary 
information. The message itself contains no information regarding the vehicle or 
the route since it is published to a topic specific to this vehicle and route.
 Chapter 4. The publish/subscribe application 79



Figure 4-46   The accident publication message 

In Figure 4-46, we see the accident message generated when a vehicle has had 
an accident on his route. It contains the name of both the vehicle and the route, 
because this message will be published to a general topic for all the accidents. 

The breakdown publication message is very similar to the accident message. 
Only the Type attribute is changed, from accident to breakdown.

4.6  Publishing in C
We provide two distinct versions of the Vehicle programs in C. One is written to 
the C AMI API, and the other is written to the C MQI API.

The Vehicle program’s main logic is owned by module ptVehicle.c, while support 
functions can be found in ptVehUty.c.

Publish/Subscribe logic is implemented by three functions: PSInitialize(), 
PSPublish() and PSTerminate().

The AMI implementation of these three functions is included in module 
ptVehAMI.c, while the MQI implementation is included in ptVehMQI.c.

A Microsoft Visual Studio project named ptVehicleAMI.dsp is used to build 
ptVehicleAMI.exe out of source modules: ptVehicle.c, ptVehUty.c, ptVehAMI.c.
80 MQSeries Publish/Subscribe Applications



A project named ptVehicleMQI.dsp is used to build ptVehicleMQI.exe out of 
source modules: ptVehicle.c, ptVehUty.c, ptVehMQI.c.

Both executables can be run from the command line passing the following 
parameters: Mode, Geography, Route, Vehicle, NumberOfStops,and 
TimeBetweenStops. See Example 4-1 and Example 4-2.

Example 4-1   

c:\tmp>ptVehicleAMI Tube London Piccadilly UTrain001 10 5

Example 4-2   

c:\tmp>ptVehicleMQI Trains London HogwartsExpress WizTrain077 20 6

Typically the programs will be run via the program PubLauncher, which is driven 
by a properties file, so none of the above parameters must actually be specified 
explicitly.

The programs write diagnostic information to the window, but sometimes it is 
better to have the same information written to a file. In order to obtain this, you 
should define an environment variable named VEHICLE_TRACE (any non-null value 
can be assigned to this variable) prior to program execution.

File with names such as ptVehicle.processid.trc will be generate in the program 
current directory.

In the AMI version of the Vehicle program you can specify the name of the queue 
manager to use as a broker via the AMI repository or the AMI host file. The same 
does not apply to the MQI Vehicle program, so in order to keep the input 
parameters identical across program versions, ptVehicleMQI.exe will send 
messages to the default queue manager, or to the queue manager specified in 
the environment variable VEHICLE_QMGR if defined.

In the following sections we will discuss the AMI and MQI implementation of the 
three main publish/subscribe related functions: PSInitialize(), PSPublish() and 
PSTerminate().

4.6.1  Vehicle C AMI program
The main distinction of the C AMI programming interface is that it is actually 
made of two separate sets of functions: the high-level interface and the 
lower-level object style interface. Calls from the two sets can be mixed in the 
same program.
 Chapter 4. The publish/subscribe application 81



With the high-level interface calls, you refer to AMI entities such as Publisher and 
Policy by name. On the other hand the lower-level interface is based upon object 
handles. 

Several utility calls are provided to get the handle associated to a named 
repository entity (for example amSesGetPublisherHandle() and 
amSesGetPolicyHandle()).

Our example program is simple enough to be written using calls from just the 
high-level interface.

Publishing information
In every AMI application the first AMI function to call is amInitialize(), and the last 
one is amTerminate().

In our Vehicle program these two calls are wrapped by PSInitialize() and 
PSTerminate().

amInitialize() will return a session handle that is to be used in any subsequent 
AMI calls.

The only other call that we need to publish information is amPublish(), that is 
wrapped by PSPublish() in module ptVehAMI.c. 

The amPublish() call issued by the program is shown in Example 4-3. Being a 
high-level call, the only handle needed is the session handle returned by 
amInitialize().

Example 4-3   The amPublish() call

fSuccess = amPublish(hSession,                     /* session handle       */
                     pszPublisher,                 /* publisher name       */
                     pszPolicy,                    /* policy name          */
                     NULL,                         /* no response expected */
                     strlen(pszTopic),             /* topic name length    */
                     pszTopic,                     /* topic name           */
                     strlen(pszMsg),               /* length of data       */
                     pszMsg,                       /* publication data     */
                     NULL,                         /* publish message name */
                     &lCC,                         /* completion code      */
                     &lRC);                        /* reason code          */

Restriction: C AMI calls and C MQI calls cannot be issued from the same 
operating system process (even from different threads).
82 MQSeries Publish/Subscribe Applications



The other parameters specify:

� The names of repository entities such as Publisher and Policy

� The topic on which the message is being published

� The body of the message

Two of the parameters have been left NULL; the first one is amResponseName. 
If an AMI Receiver is passed in this parameter, then the amPublish() API 
internally requests an acknowledgment by the broker that the publication data 
has been successfully processed. The importance of this feature greatly 
depends on the business scenario and the importance of the messages being 
published. In the sample program, we decided not to exploit it.

The second parameter being omitted is pubMsgName. This parameter can be 
used to indicate the name of an AMI Message object containing the header of the 
message being published and possibly the body itself (in case the length of the 
data passed on amPublish() is zero).

In order to populate an AMI Message header (for example adding extra topics or 
a publish/subscribe content filter), lower-level AMI calls are needed (for example 
amMsgAddElement()).

Given that our example does not have any special message header 
requirements, we can omit the pubMsgName parameter.

This example showed how you can publish information with just one simple 
amPublish() call, disregarding any middleware-related details such as:

� Queue manager connection and disconnection

� Queue opening and closing

� Broker command syntax

� Administration of environment-dependent information (for example queue 
manager names and queue names read from .INI files)

This extreme level of simplicity was obtained by the combination of benefits 
coming from the usage of a comprehensive external repository by AMI, and the 
high-level AMI C calls that automatically take care of mundane tasks such as 
timing the opening and closure of the relevant queue manager queues.

Compiling and linking
AMI applications need to include amtc.h file. This is a self-contained definition 
file; no other MQSeries include file is needed.

For the link step, the import library named amt.lib must be added to your project 
library list.
 Chapter 4. The publish/subscribe application 83



4.6.2  Vehicle C MQI program
MQI programming interface does not provide any specialized verbs for 
publish/subscribe. Nevertheless it is possible to use basic MQPUT() and MQGET() 
verbs to interact with the broker, as long as certain conventions are followed.

Given the restriction according to which AMI calls and MQI calls cannot coexist in 
the same process, sometimes MQI-based publish/subscribe is the only option 
available to enable publish/subscribe messaging for applications already written 
to the MQI API.

In MQI-based publish/subscribe messaging, the following functions must be 
explicitly coded by the programmer:

� Queue manager connection and disconnection

� Queue opening and closing

� Formatting of publication or request messages in the correct broker syntax

� Parsing of broker responses or received publications according to the broker 
syntax

� Administration of environment-dependent information (for example queue 
manager names and queue names read from .INI files)

Anatomy of an MQRFH formatted message 
The most demanding chore is by no means the parsing and formatting of 
messages. In fact, even if the payload contained in a publication is completely 
opaque to the broker (that is, it is being passed to subscribers as an unchanged 
bitstream) it must be preceded by an MQRFH header (rules and formatting 
header version 1). See Figure 4-47 on page 85. 
84 MQSeries Publish/Subscribe Applications



Figure 4-47   Anatomy of an MQRFH message 

The same holds for messages generated by the broker as responses to 
commands or as forwarded publications.

Let’s now take a closer look at the anatomy of a message in MQRFH format:

� There are three fields of the message descriptor that are relevant to our 
discussion:

– Format: this is the name identifying the format of the message body. In this 
case, it is the constant value “MQHRF...“.

– Encoding: this is the encoding of the numeric information included in the 
message body (which is in MQRFH format).

– CodedCharSetId: this is the coded character set identifier of the string 
information included in the message body (which is in MQRFH format).

M
Q

M
D

M
sg

B
od

y

M
Q

R
F

H

F
ix

Le
n

V
ar

Le
n

Format = MQSTR
StrucLen = SL

MQPSCommand Publish
...

P
ay

lo
ad

<VehicleAlert> ... </VehicleAlert>

S
L

Format = MQRFH
 Chapter 4. The publish/subscribe application 85



� The MQRFH formatted message body has three parts:

– Fixed-length part (the following is the formal C definition):

typedef struct tagMQRFH {
   MQCHAR4  StrucId;         /* Structure identifier */
   MQLONG   Version;         /* Structure version number */
   MQLONG   StrucLength;     /* Total length of MQRFH including string
                                containing name/value pairs */
   MQLONG   Encoding;        /* Numeric encoding of data that follows
                                NameValueString */
   MQLONG   CodedCharSetId;  /* Character set identifier of data that
                                follows NameValueString */
   MQCHAR8  Format;          /* Format name of data that follows
                                NameValueString */
   MQLONG   Flags;           /* Flags */
 } MQRFH;

Where:

• Format: this is the name identifying the format of the message payload, 
in this case it is the constant value “MQSTR...“.

• Encoding: this is the encoding of any numeric information included in 
the message payload.

• CodedCharSetId: this is the coded character set identifier of any string 
information included in the message payload.

• StrucLength: total length of MQRFH fixed-length part and 
variable-length part (that is, excluding the message payload).

• Flags: this field is not currently being used and must be set to zero.

– Variable-length part: the variable-length string of name/value pairs 
separated by blanks. This string can also be used to accommodate any 
attribute-tagged user data, provided that the attribute names do not begin 
with MQPS. MQPS tags are reserved for MQSeries Publish/Subscribe and 
their meaning is documented in MQSeries Publish/Subscribe User’s 
Guide, GC34-5269.

– Message payload: this is the application data that is being published or 
received as a publication. Its format is stated in the relevant attribute in the 
fixed-length part of the MQRFH header. The application data must start on 
a word boundary, so there can be some extra bytes between the end of 
the name/value string and the start of the real data. Ensure that any extra 
bytes are either binary zeros or blanks. Please note that the 
recommendation is to use a 4-byte word boundary.
86 MQSeries Publish/Subscribe Applications



Publishing information
Let’s now discuss the code contained in module ptVehMQI.c.

The function PSInitialize() does not contain any real publish/subscribe-related 
code. It connects to the default queue manager (or to the one pointed to by the 
VEHICLE_QMGR environment variable) and opens the broker’s default stream 
queue. This name is well known (SYSTEM.BROKER.DEFAULT.STREAM) and 
can be safely hardcoded in the program.

The function PSTerminate() closes the opened broker queue and disconnects.

The interesting code is all contained in the PSPublish() function, where the 
following steps are executed:

1. Initialize the first part of the message body area with a default MQRFH.

2. Override defaults for Format. We send XML so it will be MQFMT_STRING.

3. Override the default for CodedCharSetId. We inherit this attribute from the 
queue manager. 

4. Compose a name/value string. Add topic and publish command details in the 
message body section following the MQRFH structure treating data as a 
zero-terminated string (see Example 4-4 on page 87 for one of the generated 
name/value strings).

Example 4-4   PSPublish() function parameters

MQPSCommand Publish 
MQPSTopic   PublicTransport/Alerts/Accidents 
MQPSPubOpts NoReg

5. Compute and update MQRFH StrucLength by adding the MQRFH structure 
size, the length of the name/value string, and any extra bytes needed to align 
the application data on a word boundary.

6. Set the message descriptor Format to MQFMT_RF_HEADER.

7. Set the message descriptor MsgType to MQMT_DATAGRAM (we are not 
expecting any response from the broker).

8. Finally call the MQI MQPUT() verb to send the publication message. The 
BufferLength passed to MQPUT() is the sum of MQRFH fixed and variable 
parts plus the message payload sizes.

Tip: In order to accommodate all platform requirements, ensure that the 
application data starts on a 16-byte boundary.
 Chapter 4. The publish/subscribe application 87



Compiling and linking
On top of customary MQI include files, the file cmqpsc.h can be included, in order 
to access constant definitions for well-known name/value tags. Linkage of the 
application is not influenced by publish/subscribe so the standard MQI rules 
apply.

In general, any MQI language implementation can be used to implement 
publish/subscribe messaging (even if no equivalent of cmqpsc.h is provided by 
IBM).

For instance a Microsoft Visual Basic application using the MQSeries COM+ 
interface can interact with an MQSeries Publish/Subscribe broker, as long as the 
format conventions discussed are respected.

4.7  Publishing in Java
In this section, we explain how to publish a message to a topic in Java, either 
with Java AMI or with JMS, and we illustrate it with our application.

To publish a message either with Java AMI or with JMS, our PubThread uses the 
following PubJava interface:

public interface PubJava {
public void cleanup();
public void open(com.ibm.itso.swa111.PubData pubData);

Note: When explicitly formatting an MQRFH in C, remember that the resulting 
bitstream is not a C zero terminated string, but it is a binary array of 
characters. Applying standard string library functions such as strcpy() may 
lead to unpredictable results.

Tip: When publishing without requesting an acknowledgment, it can be tricky 
to troubleshoot a bad published message, so it is recommended that you 
define a queue named TMP.BROKER.REPLY and insert the following 
temporary debug code just before the MQPUT() call:

md.MsgType = MQMT_REQUEST;
strncpy(md.ReplyToQ, "TMP.BROKER.REPLY", MQ_Q_NAME_LENGTH);

The broker response messages containing information about the error will be 
put to the TMP.BROKER.REPLY queue, and can be displayed with a suitable 
tool (for example the MQSeries Explorer tool included in the MQSeries for 
Windows 2000 product).
88 MQSeries Publish/Subscribe Applications



public void publishAccident(com.ibm.itso.swa111.PubData pubData);
public void publishBreakdown(com.ibm.itso.swa111.PubData pubData);
public void publishPosition(com.ibm.itso.swa111.PubData pubData);
}

The open() method is intended to open the session to the messaging service 
provider (either a JMS TopicSession or an AMI AmSession) and to create the 
objects depending on that session.

The purpose of the cleanup() method is to undo what has been done in the 
open() method, to release to messaging service provider resources, and to allow 
a garbage collecting of the used Java resources.

The three publishXxxxxxx() methods we’ve just discussed are used to publish a 
message to a given topic based on the information contained in the data bean 
pubData.

In the next two sections, we discuss how a publication is sent to a  and illustrate 
it by showing how the PubJMS and PubJavaAMI classes are implemented this 
PubJava interface.

4.7.1  Publishing in JMS
The JMS concepts were introduced in 4.2.3, “JMS overview” on page 36 . For a 
more systematic description of JMS and the JMS API, please refer to Using Java, 
SC34-5456. In 4.2.4, “JMS configuration, JNDI and JMSAdmin” on page 39, we 
discussed the JNDI aspects of JMS and they are not covered again in this 
section. Here we concentrate on the coding aspects of JMS.

1. The first step in a JMS program is to import the required packages:

– import javax.jms.* 

This is the JMS interface already described.

– import javax.naming.* and import javax.naming.directory.*

These are the two packages required for JNDI.

2. We can now retrieve the information that has been stored in JNDI, that is 
create our TopicConnectionFactory and topics.

a. We create a hash table, put the information relative to our JNDI service 
provider, and get our initial context:

Hashtable env = new Hashtable();
env.put( Context.INITIAL_CONTEXT_FACTORY, jmsInfo[0] );
env.put( Context.PROVIDER_URL, jmsInfo[1] );
env.put( Context.REFERRAL, jmsInfo[2] );
ctx = new InitialDirContext( env );
 Chapter 4. The publish/subscribe application 89



When using VisualAge for Java as the Persistent Name Server, only the 
first two environment variables are used, with a value as follows: 

contextFactory=com.ibm.ejs.ns.jndi.CNInitialContextFactory
initURL=iiop://hostname/

These values are defined in the pub/sub properties file used by our 
application.

The REFERRAL variable is only used when the JNDI service provider is 
an LDAP server.

b. Once we have our initial context, we can look it up for JMS administered 
objects that were stored in it with the JMSAdmin tool.

tcf = (TopicConnectionFactory)ctx.lookup(jmsInfo[3]);
topicAccident = (Topic)ctx.lookup(jmsInfo[4]);
topicBreakdown = (Topic)ctx.lookup(jmsInfo[5]);
tConn = tcf.createTopicConnection();

We also create immediately the TopicConnection, since it doesn’t cause 
an MQSeries connection to the queue manager to be opened at that time. 
The names of the TopicConnectionFactory and of the topics stored in 
JNDI are defined in the pub/sub properties file used by our application:

jndiTopicConnectionFactory=jms/ITSOPSBND
jndiTopicAccident=jms/Accident
jndiTopicBreakdown=jms/Breakdown

3. From the TopicConnection we have, we create a TopicSession and from it all 
the other JMS objects needed:

tSess = tConn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE );

The parameter false indicates that we don’t use transactions in this session.

publisherAccident = tSess.createPublisher(topicAccident);
publisherBreakdown = tSess.createPublisher(topicBreakdown);

When the topics to which we will publish are well-known beforehand, we can 
store and retrieve them from JNDI and use them to create publishers so that 
you only need to use their publish method when publishing, without having to 
recreate them each time. On the other hand, if the topic is not known before 
runtime, as is the case when we publish the position of each vehicle to a topic 
specific for each vehicle, then we can dynamically create this topic from the 
session based on the String name of the topic and create a publisher for this 
topic as shown in the following code:

topicPosition = tSess.createTopic(pubData.topic);
publisherPosition = tSess.createPublisher(topicPosition);

JMS provides various types of messages. In our application we are only using 
XML publications and only need messages of type TextMessage.

msgAccident = tSess.createTextMessage();
90 MQSeries Publish/Subscribe Applications



msgBreakdown = tSess.createTextMessage();
msgPosition = tSess.createTextMessage();

4. The last step to publish a message is to write the text into the message and 
then publish it:

msgPosition.setText(content);

where content is our XML message.

publisherPosition.publish(msgPosition);

After all the messages have been published, we can now close all open 
resources.

5. The resources we have to close are the TopicPublisher, the TopicSession and 
the TopicConnection:

publisherBreakdown.close();
publisherAccident.close();
publisherPosition.close();
tSess.close();
tConn.close();

These were all the steps needed to publish a message with JMS. We now follow 
a similar approach for publishing with Java AMI.

JMS limitations
The JMS specification could not include all the functionalities and features 
offered by the existing messaging services providers or messaging-oriented 
middleware. Its main aim is to maximize portability by providing a simple 
standard interface including the most important features. In that respect, it 
doesn’t cover all the functionalities included in MQSeries in general, and in 
MQSeries Publish/Subscribe in particular, such as:

� Publication of messages in retained mode (that is, full support for state 
publications)

� Publication/subscription in a broker network-aware fashion (for example 
specifying the scope of the publication/subscription).

� Content-based subscription (JMS support a form of message filtering that is 
managed by the client, content based subscription are instead enforced 
directly by the broker).

4.7.2  Publishing in Java AMI
This section is not a detailed description of how AMI works. It is only a 
description of how to use Java AMI to publish messages.

1. The first step in an AMI program is to import the required AMI package:
 Chapter 4. The publish/subscribe application 91



import com.ibm.mq.amt.*;

2. The next step is to retrieve the information stored in the AMI repository and 
create the AMI objects based on this information.

We start by setting the files containing the queue manager definition and the 
AMI repository:

amSessionFactory = new AmSessionFactory();
amSessionFactory.setLocalHost(amiInfo[0]);
amSessionFactory.setRepository(amiInfo[1]);

These two files are defined in the properties file:

localhostFile=amthost.xml
repositoryFile=amt.xml

We then create the objects based on the definitions contained in the 
repository (for the policies and publishers). The sessions and messages don’t 
need any definitions from the repository:

amSessionEvent = amSessionFactory.createSession(SESSION_EVENT);
amSessionState = amSessionFactory.createSession(SESSION_STATE);
amPolicyEvent = amSessionEvent.createPolicy(amiInfo[2]);
amPolicyState = amSessionState.createPolicy(amiInfo[3]);
amPublisherAccident = amSessionEvent.createPublisher(amiInfo[4]);
amPublisherBreakdown = amSessionEvent.createPublisher(amiInfo[5]);
amPublisherPosition = amSessionState.createPublisher(amiInfo[6]);
amMessageAccident = amSessionEvent.createMessage(MESSAGE_ACCIDENT);
amMessageBreakdown = amSessionEvent.createMessage(MESSAGE_BREAKDOWN);
amMessagePosition = amSessionState.createMessage(MESSAGE_POSITION);

The repository file contains the policies and publishers, whose names are 
read from the properties file:

– policyState=VEHICLE.POSITION.PUB.SUB.POLICY
– policyEvent=VEHICLE.ALERT.PUB.SUB.POLICY
– publisherPosition=VEHICLE.POSITION.PUBLISHER
– publisherAccident=VEHICLE.ALERT.PUBLISHER
– publisherBreakdown=VEHICLE.ALERT.PUBLISHER

3. After all objects are created, we must open them:

amSessionEvent.open(amPolicyEvent);
amSessionState.open(amPolicyState);
amPublisherAccident.open(amPolicyEvent);
amPublisherBreakdown.open(amPolicyEvent);
amPublisherPosition.open(amPolicyState);
92 MQSeries Publish/Subscribe Applications



4. And finally, we can publish our messages after having set their content and 
the topic they are to be published to:

amMessagePosition.addTopic(pubData.topic);
amMessagePosition.writeBytes((content).getBytes());
amPublisherPosition.publish(amMessagePosition, amPolicyState);

5. After all messages have been set, we clean up the resources by closing the 
publishers and the sessions:

amPublisherAccident.close(amPolicyEvent);
amPublisherBreakdown.close(amPolicyEvent);
amPublisherPosition.close(amPolicyState);
amSessionEvent.close(amPolicyEvent);
amSessionState.close(amPolicyState);

4.8  Subscription
The subscriber application is a stand-alone Java-based GUI window that uses 
the Java AMI APIs.

In the following sections we describe:

� The setup of the environment

� The AMI administration setup

� The sample subscriber application

4.8.1  Setup of the environment
There are some steps required to set up the environment before being able to 
use the AMI subscriber application. In this section, we also cover what is needed 
to develop the application.

Software required:

� MQSeries 5.1 or 5.2

� MQSeries Publish/Subscribe SupportPac MA0C

Important: AMI handles and objects references can be used on a different 
thread from that on which they were first created for operations that do not 
involve access to the underlying message transport. However, opening a 
session accesses MQSeries in a way that means all operations within that 
session (that is, sending, receiving, publishing or subscribing) must be 
executed within the same thread.
 Chapter 4. The publish/subscribe application 93



� AMI APIs - SupportPac MA0F_NT

� XML Parser for Java (XML4J) 

� VisualAge for Java 3.5.3

For instructions on installing these products, please refer to 4.2.7, “AMI 
installation” on page 56 and 4.2.1, “MQSeries Publish/Subscribe installation” on 
page 29.

4.8.2  XMLParser setup
We have used XML4J parser for XML parsing in our application. The XML4J 
parser can be freely downloaded from:

http://www.alphaworks.ibm.com/tech/xml4j

Download the XML4J-J-bin.3.1.1.zip from the above Web site and unzip in a 
newly created directory (we will use C:\XML4J in the rest of the chapter).

4.8.3  VAJava setup
We are using VisualAge for Java Version 3.5.

Here are the steps to follow to work with AMI and XML4J parser in VisualAge for 
Java:

1. Make sure the features IBM XML Parser for Java is loaded in the workspace.

2. Create a new project. We called it MqSubAMI.

3. Import in this project the required AMI JAR file com.ibm.mq.amt.jar from 
directory C:\Program Files\IBM\MQSeries\Java\Lib (where C:\Program 
Files\IBM\MQSeries is the MQSeries installation directory).

4. Import xml4j.jar and xerces.jar files from directory C:\XML4J\XML4J-3_1_1 
(where C:\XML4J\ is the XML4J parser directory) into the IBM XML Parser for 
Java project.

4.9  AMI administration setup
In this section we will discuss the necessary AMI administration set up for 
executing the subscriber application. Please refer to 4.2.8, “AMI configuration” on 
page 60 for AMI Administration Tool usage details. Create a subscriber 
VEHICLE.SUBSCRIBER as shown in Figure 4-48 on page 95.
94 MQSeries Publish/Subscribe Applications

http://www.alphaworks.ibm.com/tech/xml4j


Figure 4-48   The AMI administration console displaying Subscriber setup 

Next create a policy VEHICLE.SUB.POLICY as discussed in 4.2.8, “AMI 
configuration” on page 60.

In the Initialization tab, if you have a default queue manager running set 
Connection Mode to Real. Otherwise, set it to Logical and supply the connection 
name as specified in the local host file. In our example we have kept connection 
mode as Real and connection name as defaultConnection.

Then in the Subscriber tab, check Use CorrelId as Id as shown in Figure 4-49 on 
page 96. This CorrelId is used by the broker as part of the subscriber's identity. 
 Chapter 4. The publish/subscribe application 95



Figure 4-49   Displaying Subscriber tab on VEHICLE.SUB.POLICY 

4.10  Sample subscriber application 
The subscriber application is a simple Java AMI-based application that 
subscribes to all the three different messages as published by the publishing 
application: one message to indicate vehicle position, another message when it 
has an accident and the third message when the vehicle has broken down. Each 
of these messages has a different subtopic string with a common main topic. So 
it is sufficient to subscribe only the main topic name followed by /* (forward slash 
and asterisk).

In this application the message topic is PublicTransport/* . The published 
messages are displayed in the window shown in Figure 4-50 on page 97.

The subscriber application has three parts:

� Control Program

� XML parser program

� GUI program
96 MQSeries Publish/Subscribe Applications



The GUI program displays the published message and invokes the Control 
Program. The Control Program makes the actual AMI calls, subscribes to the 
topic, and receives the message. The Control Program uses the XML Parser 
program to parse the XML message. The message parsed is shown in 
Figure 4-50.

Figure 4-50   Subscriber Application view 

The following section describe the third part of the subscribe application.

4.10.1  Control Program 
The program reads all its initialization parameters from the properties file called 
subscribe.properties. 

The properties file: subscribe.properties
This properties file contains the information specific to subscription.

Here are the entries found in the application part of the properties file:

� hostfilename - Name of the host XML file

� repositoryfilename - Name of the Repository XML file.

� policyname - Name used to create the AmPolicy. This name matches the 
Policyname in the repository.
 Chapter 4. The publish/subscribe application 97



� messagereceiver- Name of the message used to receive publications. This is 
a user-defined tag.

� subscribername - Name used to create the AmSubscriber used for sending 
subscriptions and receiving publications. This name matches the Service 
definition in repository.

� messagesubscriber- Name of the message used to subscribe. This is a 
user-defined tag for the message. 

� sessionname - Name of the session used to create the AmSession. This is 
also a user-defined tag for the Session. 

� topicname - Name of the topic to which the application is subscribed. In this 
example we are subscribed to PublicTransport/*. All the topics starting with 
PublicTransport will be published.

� waittime - A period of time (in milliseconds) that the receiver waits for a 
message to become available.

Program flow
This section is not a detailed description of how AMI works. It is only a 
description of how to use Java AMI to subscribe:

1. Import the required AMI package:

import com.ibm.mq.amt.*;

2. Read all the entries from the properties file subscribe.properties.

3. Retrieve the information stored in the AMI repository and create the AMI 
objects based on this information.

We start by setting the files containing the queue manager definition and the 
AMI repository:

subscriberSessionFactory = new AmSessionFactory();
subscriberSessionFactory.setLocalHost(subinit.hostfileName);
subscriberSessionFactory.setRepository(subinit.repositoryName);

These two files are defined in the properties file:

hostfilename=amthost.xml
repositoryfilename=amt.xml

Note: The entries from the properties file are stored in the 
SubscriberInitData data bean, as follows:

SubscriberInitData subinit=new SubscriberInitData();
98 MQSeries Publish/Subscribe Applications



We then create the objects based on the definitions contained in the 
repository (for the policies and subscriber). The session and messages don’t 
need any definitions from the repository:

subscriberSession = 
subscriberSessionFactory.createSession(subinit.sessionName);
policy=subscriberSession.createPolicy(subinit.policyName);
policy.setWaitTime(new Integer(subinit.waitTime).intValue());

subscriber = subscriberSession.createSubscriber(subinit.subscriberName);
subscribeMsg = subscriberSession.createMessage(subinit.messageSubscriber);

The repository file contains the policies and subscribers, whose name are 
read from the properties file:

– policyname=VEHICLE.SUB.POLICY
– subscribername=VEHICLE.SUBSCRIBER

4. After all objects are created, we must open them:

subscriberSession.open(policy);
subscriber.open(policy);

5. Next, we can subscribe our messages after having set the topic to which we 
subscribed with a unique CorrelId:

subscribeMsg.addTopic(TOPIC);
correlId=generateCorrelId();

Tip: The hostfile name and repository file name can also be retrieved from 
the environment. Typically the location of the host file and the repository 
file would be under the root directory of the AMI installation path, which 
would have been indicated by AMT_PATH environment variable. If you 
desire to keep these files in a separate location, then you can set the 
following two environment variables and assign the name of the file with 
the full path:

set AMT_HOST= Host file Name
set AMT_REPOSITORY= repository file name

Important: When setting the waitInterval within the program, make sure to 
uncheck the Wait Interval Read Only property of VEHICLE.SUB.POLICY in 
the AMI administration console. This wait interval overwrites the Wait 
Interval property.
 Chapter 4. The publish/subscribe application 99



if (this.correlId != null )
{

subscribeMsg.setCorrelationId(this.correlId.getBytes());
}
subscriber.subscribe(subscribeMsg,policy);

6. Finally, we can receive our messages, which are published on the topic to 
which we subscribed. Since the publishers are in a different flavor such as 
C-based MQI, Java AMI and JMS, typically the format of the message as 
published by JMS is different from MQI or Java AMI. Care has been taken in 
the subscriber application to interpret the message published by a JMS 
application. Refer to 4.10.4, “Parsing JMS-based published message” on 
page 102 for the JMS message format.

if (this.correlId != null )
{

subscriber.receive(receiveMsg, subscribeMsg, policy);
}
else
{

subscriber.receive(receiveMsg, policy);
}
if (receiveMsg.getFormat().indexOf("HRF2")==-1)

msgInString = 
new String(receiveMsg.readBytes(receiveMsg.getDataLength()));

else
msgInString=parseRFH2(receiveMsg);

Important: In order to run multiple instances of the same subscriber using 
the same queue, the broker maintains the uniqueness of each application 
by its CorrelId, which has been generated by the application itself. (The 
latest release of AMI APIs (Version 1.2) supports automatic generation of 
the CorrelId.)
100 MQSeries Publish/Subscribe Applications



7. The next step is to parse the message, which is in XML format.

xmlParser.parse(new ByteArrayInputStream(msgInString.getBytes()))

8. After all the messages are received, we unsubscribe to the topic we 
subscribed in step 5 of the Control Program:

subscribeMsg.addTopic(TOPIC);
subscriber.unsubscribe(subscribeMsg, policy);
if (this.correlId != null )
{

subscribeMsg.setCorrelationId(this.correlId.getBytes());
}

9. After unsubscribing is done, we release the resources by closing the 
subscriber and the session:

subscriber.close(policy);
subscriberSession.close(policy);

Let’s discuss some important methods in which we covered the above steps 
and operations:

– Init() -This method is invoked the first time to do the initialization. Inside 
this method, the readProperty() method is invoked. Step 3 of the Control 
Program to step 4 of the Control Program is carried out in this method.

– readProperty() - This method is responsible for reading the property file as 
described in step 1 of the Control Program.

10.subscribe() - The subscription part is carried out in this method. Refer to step 
5 of the Control Program.

11.receive() - This method receives the published message. If the message 
header is RFH2, then it invokes the parserRFH2() method. 

12.unsubscribe() - This method does the unsubscribing operation as discussed 
in step 9 of Control Program

13.close() - This method close all the resources as discussed in step 9 of Control 
Program

14.parseRFH2 - This method acts as a filter to the RFH2 message header. It 
parses the RFH2 message header and extracts the actual message in the 

Important: The wait interval may be several seconds as discussed in step 
3. If no message arrives within this time interval, the subscriber program 
throws an exception AMRC_NO_MSG_AVAILABLE and exits from the 
blocking call. At this point the program checks if the user has requested to 
exit the application. If not, it goes back into a wait state.
 Chapter 4. The publish/subscribe application 101



String format. Refer to 4.10.4, “Parsing JMS-based published message” on 
page 102 for details of the message format.

4.10.2  XML parser program 
The published message format is in XML form. To parse these XML messages 
we have used the SAX parser. Please refer to Appendix E, “Additional material” 
on page 211 for the message format.

The Control Program application supplies the published XML message to the 
parser and gets back the required value in a proper format.

Refer to the additional material that accompanies this redbook for XMLparser 
program code snippets.

4.10.3  GUI program
The GUI program displays the published message when any message gets 
published. The GUI program works as follows:

1. Invokes the Control Program that carries out the operation, as discussed in 
4.10.1, “Control Program” on page 97.

2. The GUI program continuously calls the receive() method of the Control 
Program so that it always receives the new published message and 
immediately displays the same.

3. The program quits when you click the Close button.

4.10.4  Parsing JMS-based published message 
The JMS message is composed of four parts (see Figure 4-51 on page 103):

� The MQSeries Message Descriptor (MQMD) 
� The MQRFH header
� The MQRFH2 header
� The message body (that is, the payload)

Important: In a scenario where both publisher and subscriber are written to 
the same API (for example, they are all JMS applications) no special handling 
for the MQRFH2 header is necessary.

Important: Make sure the broker is running, and the host file and repository 
file are placed in the proper path.
102 MQSeries Publish/Subscribe Applications



Figure 4-51   Anatomy of message format as published by JMS Pub application

Let’s now take a closer look at the MQRFH2 header as used by JMS:

� There is one field of the message descriptor that is relevant to our discussion:

– StrucLength:Total length of MQRFH2, including the NameValueData 
fields)

� The MQRFH2 formatted message body is made of three parts:

– Fixed-length part 

• StrucId: this is the name identifying the format of the message 
payload. It is four characters in length.

• Version: this is the encoding of any numeric information included in the 
message payload.
 Chapter 4. The publish/subscribe application 103



• StrucLength: this field gives the total length of the MQRFH2 
fixed-length part and variable-length part, excluding the message 
payload.

• Encoding: this is the encoding of any numeric information included in 
the message payload.

• CodedCharSetId: This specifies the coded character set identifier of 
character strings in the data(if any).

• Format: Format name of the data that follows NameValueData.

• Flag: This field is currently not used.

• NameValueCCSID: The coded character set identifier for the 
NameValueData character strings contained in this header

– Variable-length part: The fixed portion is followed by the variable portion 
which contains a varying number of MQRFH2 folders. Each folder 
contains a varying number of elements or properties. Folders are used to 
group together related properties. The MQRFH2 headers created by JMS 
can contain up to three folders:

• <mcd> folder: This contains the properties that describe the format of 
the message. This folder is always present in a JMS MQRFH2.

• <jms> folder: This contains the extra JMSX properties that cannot be 
fully expressed in the MQMD. This folder is always present in a JMS 
MQRFH2.

• <usr> folder: This contains application-defined properties associated 
with the message. This is an optional folder. It is only present if the 
application has set some application-defined properties.

– Message payload: this is the application data that is being published.

In order to extract the message payload, we need to read the value of 
StrucLength field, so that we can calculate the offset (that is, the starting point of 
the message payload) by this simple formula:

offset = Total Length of message - StrucLength.

Once we get the offset value, we can retrieve the message using AMI APIs as 
shown in Example 4-5.

Example 4-5   

receiveMsg.setDataOffset(offset);
receiveMsg.readBytes(receiveMsg.getDataLength()- offset)));

Refer to the additional material accompanying this redbook for code snippets of 
the parseRFH2() method.
104 MQSeries Publish/Subscribe Applications



The mapping of JMS message onto MQSeries Message format is documented in 
Using Java, SC34-5456.

4.11  Comments and extensions
This first scenario suffers from the following limitations:

� All the information is published as non-retained. This means that the 
subscriber application will receive only the publication that became available 
from the time it started up. This hinders any attempts to provide vehicle 
tracking features without using an external database.

� The rich publication data received by the subscriber application is not 
correlated to produce value-added information from an end-user point of view. 
An example of this may be the production of forecasts about expected time of 
arrival (ETA) of vehicles at a given point in time.

In the following sections, we will discuss potential extensions to this first 
scenario.

4.11.1  Retained publications
The main cause of the current version of the subscriber application shortcomings 
is to be traced back to the fact that all the position information published is 
actually state information and not event information.

An MQSeries Publish/Subscribe broker accommodates state information through 
a special form of publication named retained. By adopting the retained style of 
publications, the broker actually keeps a copy of the last publication message 
received for each retained topic.

Any subsequently received message on the same topic will overwrite the 
internally saved one.

Subscribing applications are affected in the following ways:

� After having registered a subscription, they are immediately sent all the 
retained publication messages held by the broker, and any other messages 
matching the requested topics as they become available to the broker.

� At subscription time, they can ask the broker to explicitly tag each retained 
message, in order to perform special handling (for example, display the 
information on a window, labelling it as potentially old).

� At subscription time they can ask the broker to send all the retained 
messages matching the topic only when explicitly asked by the subscriber.
 Chapter 4. The publish/subscribe application 105



Our example subscriber program can get the benefit of retention at publication 
time without the need for any code changes.

Retained publications with MQI
Altering the C MQI version of the Vehicle program requires changes to the code. 
In fact a new name/value item must be added to the name/values string in the 
MQRFH header of the publication message.

The new item is the following publication option: MQPSPubOpts RetainPub. In C 
this would look like the following:

strcat(pszNameValueString, MQPS_PUBLICATION_OPTIONS_B);
strcat(pszNameValueString, MQPS_RETAIN_PUBLICATION);

We do not provide a modified version of the program in the additional material 
that accompanies this redbook.

Retained publications with JMS
JMS specifications does not include special provisions for state information. As 
we will discuss later, this does not impede JMS from subscribing to a topic that is 
retained.

Note: A common misconception of the retained publications feature leads 
developers to try to use it in order to enable subscribers to catch up with old 
publication messages that were received by the broker prior to subscription.

This is not correct. In fact for each single retained topic no more than one 
message is kept by the broker. All messages received before than this will not 
be received by subscribers.
106 MQSeries Publish/Subscribe Applications



Figure 4-52   Making a topic retained in the AMI Repository 

Retained publications with AMI
Making a topic retained for an AMI publishing application is as simple as 
changing a setting in the repository file.

With reference to our example environment these are the steps to follow:

1. Start the AMI Tool

2. Open the amt.xml file containing the repository

3. Select VEHICLE.POSITION.PUB.POLICY policy icon

4. Select the Publish tab

5. Check the Retain option

Now alter the pub.properties file in order to activate the AMI C or AMI Java 
publisher and run the publisher program once, waiting until it terminates.

At this point start the subscriber, and you should see position information 
received even if no one is currently publishing it. This information is in fact of a 
retained nature.

Restriction: JMS does not support retained publications.
 Chapter 4. The publish/subscribe application 107



If you restart the publisher you will see that the freshly published information will 
join the old one on the subscriber window, as it become available to the broker.

From the user point of view, the added value of our subscriber application is 
higher. In fact, as soon as it is started it immediately displays the last known state 
of the system and then updates it with any new information received.

A few issues still remain open:

� There is no simple way to use alert information to augment the position 
information (for example Vehicle X was at stop Y at time T, but then had an 
accident).

� There is no simple way to produce a single view of current positions and 
forecasted ones.

In this context no simple way means that to implement the requested features it 
would take a database, but then the subscriber application would increase in 
complexity (for example global transaction handling) and would become less 
eligible to be transformed in a lightweight Web application.

In the following sections we will evolve the application in a way that will cope with 
all the limitations of the current version.

4.11.2  Streams
All our publishing applications send messages to queue 
SYSTEM.BROKER.DEFAULT.STREAM.QUEUE. This is the broker default 
stream, and is automatically defined by the broker the first time it starts up.

In general a stream is a local queue used by the broker to receive publications. In 
this section we will discuss how streams can be used in 
MQSeries Publish/Subscribe.

Topic namespace partitioning
When a publisher publishes messages or a subscriber registers a subscription, 
these operations explicitly or implicitly (in case of the default stream) specify a 
stream name to which to refer.

The stream name can be viewed as a high-level qualifier for the topic name. So, 
if an application subscribes to the topic Stocks/* on stream NYSE it will not 
receive messages published on topic Stock/JunkBonds on stream NASDAQ.

Restriction: Stream queues must not be cluster queues.
108 MQSeries Publish/Subscribe Applications



The topic namespace is thus actually partitioned in classes associated to the 
available streams.

Parallel computation
Each stream queue is served by a dedicated broker thread, so streams can be 
used as a means to implement parallel computation within the broker and 
increase the overall message throughput. 

Access control
A publisher can publish on a stream queue only if it has MQSeries put authority 
on that queue.

A subscriber can receive publications only if:

� It has MQSeries put authority on SYSTEM.BROKER.CONTROL.QUEUE, 
used for registering the subscription.

� It has put authority on the queue where the publication message will be sent.

� It has browse authority on the stream queue.

Using separate streams for different confidentiality levels (and setting the 
MQSeries authorities accordingly) is an effective way of implementing access 
control on the publish/subscribe domain using standard MQSeries facilities.

Impact on the applications
Explicitly specifying a non-default stream entails adding an MQPSStreamName 
name/value pair to the MQRFH header. At the application level the impact 
depends on the API flavor used:

� When using the MQI, a change in the code building the MQRFH header is 
needed.

� When using AMI the stream name can be specified using the method 
addElement of the AmMessage object. For the C language a helper macro 
AmMsgAddStreamName is provided.

� When using JMS you can set the stream name altering the definition of the 
TopicConnectionFactory object BROKERPUBQ parameter in the JNDI 
repository.

Note: the access control checks on the subscriber queue (put authority 
checked) and the stream queue (browse authority checked) are performed by 
the broker on behalf of the application, even if the subscriber does not browse 
messages from the stream queue directly and does not put messages on its 
subscriber queue.
 Chapter 4. The publish/subscribe application 109



Publishers and subscribers decoupling
The use of streams has sometimes been criticized because it looked like a 
feature coupling together publisher and subscribers by sharing a queue name, 
and thus losing some of the benefits that come from publish/subscribe itself.

This is not correct. In fact from this point of view streams can be seen simply as 
high-level qualifiers for topics.

The physical representation of a stream happen to be an MQSeries queue 
having the same name of the stream. The stream name is used also as a queue 
name by publishers to send messages to the broker.

Subscribers specify a stream name to qualify their subscription topics but 
actually access only a well-known broker queue at subscription registration time 
(SYSTEM.BROKER.CONTROL.QUEUE) and their own subscriber queue to receive 
publication messages. 

Streams also play a very important role in broker networks. This aspect is 
discussed in the following section.

4.11.3  Broker networks
In order to accommodate geographically distributed publishers and subscribers, 
or particularly heavy workloads, it is sometimes needed or recommended that 
you not use just one broker but a full set of them.

Brokers can be connected in a network. The only supported topology is the 
hierarchy (that is, the tree structure). 

Broker hierarchies
A broker network is a tree of interconnected brokers. All brokers apart from the 
root broker are created specifying the parent broker.

From a generic broker to all neighbors (that is, parent broker plus child brokers) 
there must be two-way MQSeries connectivity. The configuration of such 
connectivity must be done using MQSeries standard tools and practices external 
to MQSeries Publish/Subscribe.

While the only broker topology supported is the hierarchy, there are no 
topological constraints on how to implement the underlying queue manager 
intercommunication. For example a child broker may communicate with its 
parent broker via a hub, of which the two broker queue manager are spokes.
110 MQSeries Publish/Subscribe Applications



Even if two distinct non-descendent brokers have direct MQSeries connectivity 
between each other, they exchange MQSeries Publish/Subscribe information 
only via their closest common ancestor broker (in the worst case, this will be the 
root broker).

Each broker communicates to his neighbors information about supported 
streams. When a broker receives a subscription it forwards it to all the broker 
supporting the stream associated to the subscription.

Broker-to-broker subscriptions are consolidated by the subscribing broker.

Example
Broker1 receives two subscriptions (see Figure 4-53): 

Figure 4-53   Simple broker hierarchy 

� A subscription from application App1 on topic UsedCars/Cheap/* at stream 
BARGAINS.STREAM 

� A subscription application App2 on topic UsedCars/Cheap/ReallyCheap/* at 
stream BARGAINS.STREAM. 
 Chapter 4. The publish/subscribe application 111



When the first subscription is received, the broker registers a subscription with 
Broker0 on topic UsedCars/Cheap/*, because this broker supports the stream 
BARGAIN.STREAM. At Broker0 a similar subscription is registered with Broker2 
for the same reason.

When the second subscription is received, no interbroker subscription is 
registered, because there is one already in place for the same stream and a 
wider topic set.

The handling of publication messages is straightforward. Each broker sends 
publication messages to all the matching subscribers, irrespective of whether 
they are user applications or neighbor brokers.

The only caveat for interbroker publication or subscription message exchanges is 
that messages are put with broker authority, and not publisher or subscriber 
authority. This means that the access control checks for publishers and 
subscribers are performed only at their local broker.

From an MQSeries intercommunication point of view, brokers address queues 
owned by neighbor brokers using explicit addressing (that is, they open queues 
specifying a queue name and also a queue manager name).

To ensure that this addressing works in a classic distributed queue management 
environment, it’s best to name the transmission queues the same as their target 
queue managers name, or provide a queue manager alias such as:

DEFINE QREMOTE (TARGET.QMGR) 
RNAME() 
RQMNAME(TARGET.QMGR) 
XMITQ(WEIRD.NAME.TARGET.QMGR.XMITQ)

On the other hand, if brokers are hosted by queue managers residing on an 
MQSeries queue manager cluster, no particular administrative action is needed.

Building the hierarchies
Brokers are added to a network from the root down, but are removed from the 
leaves up.

In the rare circumstances where this is not feasible (for example a wrong 
administrative action deleted an intermediate queue manager hosting a broker), 
there is a special command named clrmqbrk that can be used to fix the 
hierarchy, but its usage should be restricted to abnormal situations.

The first time that a broker is started using the strmqbrk command, you can 
specify a parent broker using the -p option. This value is retained by the broker 
but to change it you cannot simply pass a different value. You should use the 
clrmqbrk command.
112 MQSeries Publish/Subscribe Applications



To remove a leaf broker from a hierarchy you should use the dltmqbrk command 
after having quiesced the broker itself, all local publish/subscribe applications 
and all inbound MQSeries channels from neighbor brokers.

Example
The hierarchy in Figure 4-53 on page 111 can be built as follows: 

strmqbrk -m Broker0
strmqbrk -m Broker1 -p Broker0
strmqbrk -m Broker2 -p Broker0

Streams
Streams play a key role in broker networks. In fact subscriptions are propagated 
from one broker only to those neighbors that support the stream included in the 
subscription (possibly an implicit SYSTEM.BROKER.DEFAULT.STREAM).

Let’s suppose that the hierarchy in Figure 4-53 on page 111 is extended with two 
full broker subtrees rooted on Broker1 and Broker2, and for some business 
reason you want to segregate messages on BARGAINS.STREAM to the 
originating subtree. 

To obtain this effect it is enough to remove BARGAINS.STREAM from Broker0, 
effectively stopping subscription propagations to and from Broker1 and Broker2.

Streams in large geographically distributed broker networks are also important 
as a means to differentiate quality of service in a stream-wise manner (for 
example messages to non-critical streams are mapped to channels running only 
overnight).

Impact on the applications
As we have seen, broker networks are easy to implement, and are largely an 
administrative issue.

Most MQSeries Publish/Subscribe applications will not be affected by the 
inclusion of their broker in a hierarchy.

On the other hand, hierarchy-aware applications can explicitly set the scope of 
their publication or subscription to be local to their broker (that is, not to be 
propagated to neighbor brokers), by specifying the publication or subscription 
option Local in the MQRFH header.
 Chapter 4. The publish/subscribe application 113



114 MQSeries Publish/Subscribe Applications



Chapter 5. Migration to MQSeries 
Integrator

This chapter describes the migration of the example applications written for 
MQSeries Publish/Subscribe to an MQSeries Integrator broker, and 
demonstrates the API level interoperability between these two environments.

A general knowledge of MQSeries Integrator and a working MQSeries Integrator 
test environment (that is a working Configuration Manager, User Name Server 
and Broker) are required to carry out the tasks described in this chapter.

Please refer to MQSeries Integrator documentation for complete details about 
the product. We recommend reading Appendix A, “Planning for migration and 
integration” in MQSeries Integrator Introduction and Planning, GC34-5599. In 
particular compare your requirements against the migration inhibitors checklist.

If you need a quick start with the main MQSeries Integrator concepts and 
features, refer to Business Integration Solutions with MQSeries Integrator, 
SG24-6154.

5

© Copyright IBM Corp. 2001 115



5.1  Step-by-step guide
This section demonstrates a typical procedure for running an application written 
for an MQSeries Publish/Subscribe broker on an MQSeries Integrator broker.

5.1.1  Step 1 - Creation of a publication queue
The applications written for the simple MQSeries Publish/Subscribe scenario 
access the following broker queues:

� SYSTEM.BROKER.DEFAULT.STREAM: this queue is used by the publisher 
to send publication messages.

� SYSTEM.BROKER.CONTROL.QUEUE: this queue is used by the subscriber 
to register its subscription.

The MQSeries Integrator broker uses the same control queue as the MQSeries 
Publish/Subscribe broker. On the other hand, there is no equivalent for streams. 

In order to ensure that no changes are required to the publishing applications, we 
define a new local queue on the MQSeries Integrator broker queue manager 
named as the MQSeries Publish/Subscribe default stream queue. Using MQSC 
commands this can be done as follows:

DEFINE QLOCAL(SYSTEM.BROKER.DEFAULT.STREAM) REPLACE

5.1.2  Step 2 - Creation of a simple publish message flow
If you imported all the definitions needed to run the MQSeries Integrator samples 
you have a message flow named Default Publish/Subscribe in your workspace. If 
you don’t, you can import it from the file named SamplesWorkspaceForImport in 
the examples subdirectory of MQSeries Integrator installation directory.

This is a very simple message flow made of two nodes:

� An MQInput node named Get next message, which gets messages from a 
queue that by default is SYSTEM.BROKER.DEFAULT.STREAM.

� A Publication node named Route to matching subscribers, that actually 
publishes the message on the MQSeries Integrator broker.

In order to have a clearer view of how this message flow works, we will modify it 
by inserting a Trace node in between the two existing nodes. To do this first you 
need to check out the message flow by right-clicking the message flow icon and 
selecting the Check Out option.
116 MQSeries Publish/Subscribe Applications



To add the Trace node, drag it to the message flow graph area from the 
IBMPrimitives folder. To wire it, remove the existing connection between the 
original nodes and create two new connections, one from the MQInput node to 
the Trace node and one from the Trace node to the Publications node.

The final result of the above operations should be similar to Figure 5-1.

Figure 5-1   Trace enabled Default Publish/Subscribe message flow 

Now we can configure the trace node to write the whole message tree to a text 
file, labeling each line with a timestamp. This can be obtained by entering the 
Trace node parameters as shown in Figure 5-2 on page 118.
 Chapter 5. Migration to MQSeries Integrator 117



Figure 5-2   Tracing message tree to a text file 

Given that the payload of the messages generated by the example applications is 
in XML format, we will configure the MQInput node accordingly (see Figure 5-3). 
This does not actually impact the way messages are published, but makes the 
information in the trace easier to understand.

Figure 5-3   Suggesting the domain on the input node 

The message flow is now ready. Right-click on it and select and click Check In to 
commit your changes in the Configuration Manager database.
118 MQSeries Publish/Subscribe Applications



5.1.3  Step 3 - Deployment to the target broker
To deploy the message flow on the target broker group, use the Assignments tab 
of the Control Center. Select and click Check out, drag the modified message 
flow onto the default execution group box on the right pane, and check in the 
default execution group.

Start the deployment operation using the menu option File->Deploy->Delta 
configuration (all types). The progress and outcome of the operation can be 
monitored using the Log tab of the Control Center.

All the above deployment actions are completely standard, and apply to any 
MQSeries Integrator message flow to be deployed.

5.1.4  Step 4 - Executing example applications on MQSeries Integrator
The MQSeries Integrator broker is now ready to run with the example 
applications.

Run the stand-alone Java subscriber, then go to the Subscriptions tab of the 
MQSeries Integrator Control Center and click the Query (that is, refresh) button. 
You should see something similar to Figure 5-4.

Figure 5-4   MQSeries Integrator Control Center Subscriptions tab 

 

Subscriber queue

MQSeries Publish/Subscribe “PublicTransport/*”
MQSeries Integrator Topic syntax equivalent to 

MQSeries Publish/Subscribe header
The subscriber is using 
 Chapter 5. Migration to MQSeries Integrator 119



This means that a subscription on topic PublicTransport/* has been 
successfully registered by an application originally written for an MQSeries 
Publish/Subscribe broker, whose subscription queue is VEHICLE.SUB.QUEUE.

You are now ready to run the publisher application using any of the available 
language and API options available.

5.1.5  Step 5 - Trace analysis
If you are using a non-JMS flavor of the publisher application, the trace will show 
an MQRFH header followed by the message body. If you run the JMS publisher, 
the trace will show an MQRFH header embedding an MQRFH2 header, 
embedding the real XML application message.

5.2  Comments and extensions
We showed that any existing application written on MQSeries Publish/Subscribe 
can be run on MQSeries Integrator without requiring any code changes. In fact 
the Publish node honors all the information contained on the MQRFH header 
added by MQSeries Publish/Subscribe applications.

Even this simple migration path to MQSeries Integrator Version 2-based 
publish/subscribe has several benefits:

� ACLs can be associated to topics also for MQRFH publications.

� Message content can be altered before publication from within the publication 
message flow.

� Improved administrative tooling is available (for example, the Subscription 
view in the control manager can be used to monitor subscriptions and to 
forcibly remove them).

Moreover, messages published by MQSeries Publish/Subscribe applications can 
be subscribed to MQSeries Integrator applications (that is, applications using an 
MQRFH2 header).

In the following subsections we will discuss several more advanced aspects of 
MQSeries Integrator-based publish/subscribe:

� Support for MQSeries Publish/Subscribe streams: this feature as such is not 
supported by MQSeries Integrator, but a minimal support for compatibility 
purposes is guaranteed.

� Support for subscription points: this is a very powerful MQSeries 
Integrator-only feature.
120 MQSeries Publish/Subscribe Applications



� MQSeries Integrator broker networks and MQSeries Integrator broker 
collectives.

� MQSeries Integrator Topic-based security.

We will demonstrate each feature with an example.

5.2.1  Streams handling in MQSeries Integrator
Strictly speaking, MQSeries Publish/Subscribe streams are not supported by 
MQSeries Integrator, but a limited functionality is provided for applications 
originally written for MQSeries Publish/Subscribe.

There are three possible scenarios:

1. An application uses the MQ Publish/Subscribe default stream. There is no 
special handling for this case, the MQSeries Integrator topic that is built is the 
same as the original one.

2. An application specifies a non-default value for MQPSStreamName in the 
MQRFH header: the MQSeries Integrator topic becomes 
$SYS/STREAM/StreamName/TopicName.

3. An application publishes on a queue (for example, MY.STREAM) without 
specifying any MQPSStreamName parameter in the header, but the 
MQSeries Integrator Publish node in the message flow serving MY.STREAM 
has the Implicit Stream Naming parameter set to true. The MQSeries 
Integrator topic becomes $SYS/STREAM/MY.STREAM/TopicName.

MQRFH subscribers never specify or receive the $SYS/STREAM/StreamName 
topic prefix. On the other hand, MQRFH2 subscribers need to explicitly specify 
the prefix in the subscription request, but they will not receive it in the published 
messages forwarded by the broker.

In MQSeries Publish/Subscribe, streams are mainly used for:

� Mapping publish/subscribe access controls to normal MQSeries queue-level 
access controls

� Enabling parallel processing within the broker

MQSeries Integrator provides a topic-level ACL feature and multiple instances of 
message flows (on the same or different queues) that satisfy the above 
requirements in a different and more flexible way.
 Chapter 5. Migration to MQSeries Integrator 121



Our example applications publish only on the default stream, so the topic that is 
built is the same as the original MQSeries Publish/Subscribe one. One way to 
check this is to inspect the Subscriptions tab of the Control Center while the 
subscriber application is running (see Figure 5-4 on page 119), where the 
registered subscription appears simply as PublicTransport/#. The hash sign is 
the equivalent of the “*” wildcard in MQSeries Publish/Subscribe. Relevant 
character conversions are automatically applied by MQSeries Integrator.

See 5.2.5, “Example - migration of applications using streams” on page 130 for a 
detailed example.

5.2.2  Subscription points
In MQSeries Integrator all messages are published, or subscribed to, using a 
subscription point name and a topic name. The default subscription point is ““ 
(empty string).

Subscription points are used to publish the same message on the same topic in 
several different formats (for example, some message elements, such as the 
decimal point sign or date can be internationalized to suit the user).

Subscriber applications will then specify a topic and (optionally) the requested 
subscription point.

A typical MQSeries Integrator message flow publishing messages in a 
subscription point manner will contain several Publication nodes wired to the 
output of distinct Compute nodes dealing with the construction of the various 
message formats.

This functionality is fully available only for applications using the MQRFH2 
header. Messages with an MQRFH header can be published on an arbitrary 
service point, but MQRFH subscribers will have access only to those published 
on the default subscription point.

To clarify this we will use a short example. 

Let’s suppose we have an application that publishes confidential messages on 
topic SpooksInfo/Nukes using two different subscription points: one named 
CIA.SP supporting the American English language, and one named KGB.SP 
supporting the Russian language. 

Note: Subscription points do not partition the topic name space, but the set of 
the published messages.
122 MQSeries Publish/Subscribe Applications



When we use an ACL to restrict subscription access to the confidential 
SpooksInfo/Nukes topic, we do this irrespective of the subscription points the 
messages will be published to.

The general idea is that the semantics of a published message is associated with 
its topic, while the set of allowed syntactical realizations are associated with the 
supported subscription points. 

See 5.2.6, “Example - message translation using subscription points” on 
page 133 to see subscription points at work.

5.2.3  MQSeries Integrator broker networks and collectives
An MQSeries Integrator broker network is a hierarchy of nodes. Each node can 
be a simple MQSeries Integrator broker or a collective of MQSeries Integrator 
brokers. 

From a topological point of view, a collective is a completely connected subgraph 
that participates in the hierarchy as a single entity. Some of the brokers inside a 
collective can be connected to brokers outside the collective, acting as gateways 
on behalf of all collective members (for example, Broker1 in Figure 5-5).

Figure 5-5   Pure MQSeries Integrator broker network with a collective 

From an MQSeries intercommunication point of view, two connected MQSeries 
Integrator brokers, within or outside a collective need two-way MQSeries 
connectivity.

Broker0

Broker1 Broker2

Broker3 Broker4

Collective1

Broker5
 Chapter 5. Migration to MQSeries Integrator 123



Similar to what happens for MQSeries Publish/Subscribe broker networks, when 
a subscription is received by one broker, it causes a set of proxy subscriptions to 
be created from that broker against neighbor brokers. This way if a message is 
published anywhere in the network on a topic matching the subscription, it will be 
forwarded to the subscribed application (via its subscription broker).

As in MQSeries Publish/Subscribe broker networks, the broker takes care to 
avoid unnecessary subscriptions against neighbor brokers, in order to optimize 
the flow of messages on the networks. The message flows needed to support 
interbroker communications are automatically maintained by MQSeries 
Integrator. The administrator only needs to ensure that the broker runs at least 
an execution group.

The main tool for controlling the flow of information in an MQSeries 
Publish/Subscribe broker network is the use of streams. In MQSeries Integrator 
broker networks the access to single topics is instead regulated via ACLs, which 
operate on a domain-wide basis.

When groups of publishers and subscribers using different brokers are highly 
coupled on particular topic subtrees, it is a good idea to group the involved 
brokers in a collective, because the intra-collective communications are always 
direct (that is, without any intervening broker).

All interbroker subscriptions are always topic based, without any content filter 
specification. This means that the selection of the subset of messages matching 
a particular user-defined filter happens only on the broker owning the real user 
subscription.

It should now be apparent that an accurate design of the topic hierarchy is 
needed in order to exploit advanced publish/subscribe features, such as broker 
networks and collectives.

An overly coarse topic granularity may imply a systematic usage of content 
filtering that in a networked environment will not be used by the brokers to 
minimize the number of messages sent to their neighbors. 

On the other hand the topic tree should include elements that are general 
enough to enable topic affinities to emerge and be exploited with collectives.

See 5.2.7, “Example - MQSeries Integrator broker networks” on page 137 for a 
discussion of an MQSeries Integrator broker network involving streams.

Tip: A natural fit for MQSeries networks hosting brokers that are members of 
the same MQSeries Integrator collective is the MQSeries Clustering feature.
124 MQSeries Publish/Subscribe Applications



5.2.4  Topic-based security
MQSeries Integrator topics are hierarchies of topic qualifiers. The flat syntactical 
representation of them is a list of slash separated qualifiers.

In Figure 5-6 you can see a simplified view of the topic tree associated with our 
example application. The root topic of each hierarchy is the ““ topic, that is the 
empty string. 

Figure 5-6   Example program topic tree 

The flat syntactical representation of one of the supported topics is 
PublicTransport/Alerts/Accidents. Please notice that the root topic is not explicitly 
represented.

It is possible to associate ACLs to a subset or to all the topics supported by a 
hierarchy, using the Control Center. The ACLs specifications are then deployed 
to the target brokers that are in charge of enforcing them.

The Control Center and the target broker receive security domain-specific 
information from the User Name Server.

The following sections will explain the relationships between all MQSeries 
Integrator components involved in topic-based security, and the mechanics of 
topic ACLs.

PublicTransport

Alerts

Accidents Breakdowns

Positions

""

... ...
 Chapter 5. Migration to MQSeries Integrator 125



The User Name Server
The User Name Server (UNS) is an optional component of MQSeries Integrator 
that polls the operating system users and groups database at prefixed intervals 
(the default is 60 seconds) and extracts a list of available user IDs and a list of 
groups associated with each user ID.

This information is sent to all the MQSeries Integrator components (UNS client 
components) that registered for it with the UNS. These components are:

� The Configuration Manager

� One or more brokers

The link between one MQSeries Integrator component and the UNS is specified 
by passing the name of the UNS queue manager on the relevant parameter at 
the time the component is created.

The UNS is hosted by a queue manager, possibly the same one hosting the 
Configuration Manager and/or a broker. 

The UNS does not need any support database, but requires two-way MQSeries 
connectivity with all its client components.

Typically there will be just one UNS per MQSeries Integrator domain, and it will 
be located on a machine having access to the operating system’s user and 
groups database; for example, on Windows NT/2000 it will be a machine able to 
access the Security Account Manager (SAM) of the security domain specified 
when creating the Configuration Manager.

For more details on UNS location, see “Heterogeneous networks” on page 128.

ACLs and inheritance
Using the Control Center topics view you can grant to each topic and principal 
(that is, user or group) the following capabilities:

� Publish: the user can publish messages on the topic.

� Subscribe: the user can subscribe to messages published on the topic.

� Persistent: the user can specify the subscription option requesting delivery of 
publication messages as persistent.

This is the only tool allowed in MQSeries Integrator to build a topic ACL.

The list of principals displayed by the Control Center is built from the information 
sent by the UNS to the Configuration Manager.
126 MQSeries Publish/Subscribe Applications



There is also an extra MQSeries Integrator generated principal named “Public 
Group” to which all users implicitly belong. This group cannot be deleted.

Every topic in the topic namespace has got an explicit or implicit ACL associated 
with it. An explicit ACL is one that the administrator defined using the Control 
Center for that topic. An implicit ACL is one that is inherited from a parent topic.

If no parent topic has an explicit ACL, then the ACL is inherited from the root 
topic. The root topic always has an ACL that by default enables all members of 
the Public Group to publish, subscribe, and request persistent delivery.

The inheritance mechanisms plays a key role for dynamic topics, that is topics 
that are programmatically generated by applications.

In our example application, the administrator could restrict the access to the topic 
to PublicTransport/Positions/Trains without specifying all the dynamically 
generated Route and Vehicle topic qualifiers, but when an application subscribes 
to topic PublicTransport/Positions/Trains/London/HogwartsExpress/WizTrain077 
the ACL that is checked by the broker is the one inherited from 
PublicTransport/Positions/Trains.

Planning introduction of topic-level security
When you plan to support publish/subscribe messaging in MQSeries Integrator 
environment you may not be concerned by topic security at first, but you may 
decide to introduce it afterwards.

UNS overhead is minimal (and its polling interval can be tuned to be high), but 
when the info structure is in place, switching on topic-level security is as easy as 
creating the first ACL. 

Until that time all access control checks will transparently resolve to the ACL 
inherited from the root topic, which by default grants full publish and subscribe 
capability to all users on all topics.

Tip: It is recommended that you always install a UNS and create brokers and 
Configuration Manager accordingly, even when the topic security feature is not 
being used.
 Chapter 5. Migration to MQSeries Integrator 127



Heterogeneous networks
MQSeries messaging access control uses principals from the operating system 
of the platform where the queue manager is running. In a heterogeneous 
network, these principals will come from distinct security domains (for example, a 
password file on a UNIX box and a SAM database on Windows NT domain).

In order to use the user ID stored in the message descriptor for access control 
(for example, specifying PUTAUT CTX on the definition of a receiver channel), 
there must be some form of coordination between the administrators in the 
creation of principals on the relevant security domains. 

Similarly MQSeries Integrator access control mechanisms are designed to run in 
a heterogeneous environment where there are policies that guarantee a 
consistent naming convention and principal replication (where needed) across 
different security domains.

This means that if we restrict the observation to the principals involved in 
MQSeries Integrator-related activities, we can consider these principals as 
belonging to a unique namespace.

Let’s give a few simple examples of what this implies.

Example 1 
Let’s suppose that:

� All the MQSeries Integrator brokers and the Configuration Manager run on a 
single Windows 2000 domain.

� All the applications use a domain user ID (and not a user ID local to their 
machines).

� The UNS runs on a box from where it can access the domain-wide user ID 
and group definitions.

This is really a single namespace. The UNS will detect any changes in the 
domain principals and will communicate them to the brokers and the 
Configuration Manager.

Important: When starting to use topic-level security in a production 
environment we recommend that you alter the default ACL for the root topic to 
a more conservative setting.
128 MQSeries Publish/Subscribe Applications



Example 2
Let’s suppose that:

� The publishing application connects to an IBM AIX broker using the UNIX 
user ID john.

� The subscribing application connects to Windows 2000 broker using 
Windows domain user mary.

� The two brokers are connected together in the MQSeries Integrator topology.

� The Configuration Manager is a Windows 2000 machine on the same domain 
as all the MQSeries Integrator brokers that run on a single Windows 2000 
domain.

� The UNS runs on a Windows 2000 machine, and monitors the Windows 2000 
domain principals.

In this environment in order to be able to include john in an ACL that was created 
using the Control Center and to enable the Windows 2000 broker to correctly 
process messages published by john, the user john must be defined in the 
Windows NT domain, even if it will never be explicitly used.

Strictly speaking this is not a single namespace, but the Windows 2000 domain 
principals are a superset of the principals involved in MQSeries Integrator 
activities on the heterogeneous network.

The general rule is that the UNS should run on the machine holding the 
definitions of all the MQSeries Integrato- related principals. Given that the 
Configuration Manager component of MQSeries Integrator runs only on the 
Windows NT/2000 platform, the UNS usually runs on this platform as well, 
typically on the same domain as the Configuration Manager.

It should be now apparent that having a single instance of the UNS per 
MQSeries Integrator domain is not a limitation, provided that it is located on a 
node that can access a security domain containing all the principals used on the 
heterogeneous network (some of them natively belonging to that security 
domain, while others were created only to replicate a foreign principal).

In 5.2.8, “Example - confidential publish/subscribe environment” on page 138 we 
show some of the security concepts discussed in this section, using the Vehicle 
application scenario. 

Restriction: In contrast with what happens for MQSeries access control, 
MQSeries Integrator UNS does not collect Windows NT/2000 SID or Windows 
NT/2000 domain-qualified user ID.
 Chapter 5. Migration to MQSeries Integrator 129



5.2.5  Example - migration of applications using streams
An example of a publish/subscribe application using streams is the soccer 
sample included in MQSeries Publish/Subscribe SupportPac.

The sample is made of two applications:

� The match simulator program (amqsgam.exe) that publishes non-retained 
messages on topics Sport/Soccer/Event/MatchStarted, 
Sport/Soccer/Event/ScoreUpdate and Sport/Soccer/Event/MatchEnded at 
stream SAMPLE.BROKER.RESULTS.STREAM.

� The results service program (amqsres.exe) that subscribes to 
Sport/Soccer/Event/* at stream SAMPLE.BROKER.RESULTS.STREAM and 
uses some service-retained topics to handle recovery logic.

We will describe how to migrate this MQSeries Publish/Subscribe sample to 
MQSeries Integrator.

Initial configuration
In order to run the sample on a queue manager hosting an MQSeries Integrator 
broker, you first need to execute the following MQSC scripts that come with the 
sample: amqsfmda.tst, amqsgama.tst, amqsresa.tst.

Publication messages will be sent by the game simulator to the stream queue 
SAMPLE.BROKER.RESULTS.STREAM. This queue has no special meaning for 
MQSeries Integrator and by default is not served by any user message flow or 
internal MQSeries Integrator component.

Using the Control Center we will create a modified version of the Default 
Publish/Subscribe message flow named WMQ Pub/Sub Soccer Sample, whose 
input node is configured to read from the 
SAMPLE.BROKER.RESULTS.STREAM queue (see Figure 5-7 and the 
WMQPubSubSoccerSampleMsgFlow.xml file in the additional material 
accompanying this redbook).
130 MQSeries Publish/Subscribe Applications



Figure 5-7   MQSeries Pub/Sub Soccer Sample message flow MQInput node 

The modified message flow is then deployed to the target broker.

Running the samples
Now we run the results service application specifying the broker to connect to 
(for example, amqsres ITSOB3), using the Subscription tab in the Control Center 
we can confirm the application started and successfully registered a subscription 
(see Figure 5-8 on page 132).

The topic reported by the Control Center is: 
$SYS/STREAM/SAMPLE.BROKER.RESULTS.STREAM/Sport/Soccer/Event/#. 

The $SYS/STREAM/SAMPLE.BROKER.RESULTS.STREAM/ prefix has been 
added by MQSeries Integrator because the subscription came from an MQRFH 
client providing a non-default value (actually 
SAMPLE.BROKER.RESULTS.STREAM) for the MQPSStreamName parameter.

The results service application is now waiting for results from instances of match 
simulator applications. Let’s start a simulated game passing the name of two 
teams and a broker (for example, amqsgam Beauxbatons Hogwarts ITSOB3).

Since messages are displayed by the match simulator, nothing actually happens 
in the results service window!
 Chapter 5. Migration to MQSeries Integrator 131



Figure 5-8   Checking results service subscription 

Revising the configuration
Given that the subscription side of the application seems correct (see 
Figure 5-8), we will now have a closer look at the publishing side: the match 
simulator program.

We stop the message flow and start a simulated game. This way messages on 
queue SAMPLE.BROKER.RESULTS.STREAM will not be consumed. Using the 
MQSeries Explorer tool we browse the name/value pairs associated with one of 
the messages. They look like this:

MQPSCommand Publish
MQPSPubOpts NoReg 
MQPSTopic Sport/Soccer/Event/MatchStarted

Each message is a publication specifying a topic and the fact that the publisher is 
not registered and a specific topic. The stream on which the message is 
published is not specified in the MQRFH name value, but is implicitly determined 
by the act of putting the messages to a specific queue.

When a message like this is received by MQSeries Integrator, it is treated as if 
published to the default stream (MQSeries Integrator could not determine a 
non-default stream name anyway), so the topic that is built for subscription 
matching is:

Sport/Soccer/Event/MatchStarted

Clearly this does not match the results service subscription on the topic:

$SYS/STREAM/SAMPLE.BROKER.RESULTS.STREAM/Sport/Soccer/Event/#
132 MQSeries Publish/Subscribe Applications



To force stream-aware behavior when no stream name is contained in the 
published messages, we check the Implicit Stream Naming option on the 
Publish node (see Figure 5-9) and redeploy the message flow. 

Figure 5-9   Forcing implicit stream naming on the Publish node 

We now restart both the results service and the match simulator service 
applications, and the results are actually displayed as expected. 

5.2.6  Example - message translation using subscription points
This example shows the usage of MQSeries Integrator subscription points. The 
reason for showing this feature is the translation of TrafficConditions XML tag 
values into French, supporting both MQRFH and MQRFH2 publishers and 
subscribers.

Advanced publish/subscribe message flow
The message flow we built (see Figure 5-10) is included in the additional material 
as the AdvancedPubSubMsgFlow.xml export file.
 Chapter 5. Migration to MQSeries Integrator 133



Figure 5-10   The Advanced Publish/Subscribe message flow 

In order to exploit subscription points, we must subscribe to messages using an 
MQRFH2 header. All MQRFH subscribers will only have access to the default 
subscription point. To ensure backward compatibility with all the applications 
written so far, we will use the default subscription point for the unchanged 
English language publications, while we will use a new FRENCH.SP subscription 
point for the French language messages.

The structure of the message flow is simple. It is made of an MQInput node 
getting publication messages from SYSTEM.BROKER.DEFAULT.STREAM, and 
forwarding them in parallel to two targets: 

� One is the Publication node publishing on the default subscription point.

� One is the Compute node handling the translation to French, followed by a 
Publication node publishing on the FRENCH.SP subscription point.

Running publishers and subscribers
To run the example, import the AdvancedPubSubMsgFlow.xml file into your 
workspace and deploy it to your broker (if you already have the Default 
Publish/Subscribe message flow serving 
SYSTEM.BROKER.DEFAULT.STREAM queue, remember to remove it).
134 MQSeries Publish/Subscribe Applications



In order to show the MQRFH2 subscription with subscription points we use the 
SupportPac IA71 Static subscriber registration utility that can be downloaded 
from:

http://www-4.ibm.com/software/ts/mqseries/txppacs/ia71.html

Using the utility we subscribe to MQRFH2 messages in English with queue 
VEHICLE.MQRFH2.EN.SUB.QUEUE and to MQRFH2 messages in French 
using VEHICLE.MQRFH2.FR.SUB.QUEUE and FRENCH.SP subscription point 
(see Figure 5-11).

Figure 5-11   Creating static subscriptions 

Note: Only versions higher than 1.0 of SupportPac IA71 include support for 
subscription points.
 Chapter 5. Migration to MQSeries Integrator 135

http://www-4.ibm.com/software/ts/mqseries/txppacs/ia71.html


We create an MQRFH subscription by starting the example subscriber 
application developed in Chapter 4, “The publish/subscribe application” on 
page 27, which by default receives messages on VEHICLE.SUB.QUEUE.

The MQSeries Integrator broker now has three subscriptions registered on topic 
PublicTransport/#:

� An MQRFH subscription on the default subscription point

� An MQRFH2 subscription on the default subscription point

� An MQRFH2 subscription on FRENCH.SP subscription point

To confirm this, we use the Subscriptions tab of the Control Center and see what 
depicted in Figure 5-12.

We now start the publishing application (any API flavor of it is supported) and we 
will see messages appearing on the subscriber application window. Using the 
MQSeries Explorer tool we can check the contents of the other two queues. They 
contain the same number of messages (in MQRFH2 format) and those in 
VEHICLE.MQRFH2.FR.SUB.QUEUE will be translated in French.

The message flow worked as expected because:

� MQRFH2 subscribers received the publications in the MQRFH2 format (even 
if the original one was MQRFH1) and in the requested language

� MQRFH subscribers worked as before

� All subscribers received only one copy of each published message

Figure 5-12   Heterogeneous subscriptions 
136 MQSeries Publish/Subscribe Applications



5.2.7  Example - MQSeries Integrator broker networks
Let’s suppose that the British transport system is made up of just the London 
underground and the Dover hovercraft, and that the whole system is controlled 
by a central administrative body.

These are the main characteristics of the hypothetical system:

� Hovercrafts publish essential real-time information about their status. 

� There are only a few dozen scheduled hovercrafts trips per day, all on a single 
route from Dover to Calais.

� Underground trains publish detailed real-time information about their status.

� There are more than 100 underground trains continuously shuttling back and 
forth on a dozen routes each having dozens of stops.

� All the published information is consumed by travel agents located in London, 
apart from a few statistical topics that are subscribed by the central 
administrative body.

Now we will discuss a proposed MQSeries Integrator architecture that may 
accommodate these requirements in an optimal way (see Figure 5-13).

Figure 5-13   A complex MQSeries Integrator topology view with Control Center 
 Chapter 5. Migration to MQSeries Integrator 137



Given that the London underground system produces the biggest share of 
published messages and London site run almost all the subscriber applications, 
we decide to create a collective for the underground system. This collective will 
also run travel agent subscriber applications.

In order to guarantee an adequate level of service, we decide to support the 
remote Dover site using a locally running broker.

The central body is supported by a dedicated broker that is also the root of a 
hierarchy.

These are the main features of the proposed architecture:

� Most of the messages never leave the collective. This is a good design point 
given that intra collective communications are highly optimized.

� Most of Dover messages are subscribed by applications connected to brokers 
belonging to the collective, by positioning the central body broker between the 
collective and the Dover broker we potentially minimize the number of 
interbroker subscriptions (the gain will become bigger as we extend the 
network to support trains, ships, etc.).

5.2.8  Example - confidential publish/subscribe environment
Let’s suppose that the example vehicle applications will be used not only for 
normal public transport subsystems, but also by the military community to keep 
track of military convoy movements.

The specifications mandate a strict access control over the publish/subscribe 
activity on some military reserved topics, without disrupting the service for the 
already deployed non-confidential subsystems (for example, Tube and Trains).

Environment setup
The Windows 2000 principals involved in this example are the following:

� mqm: this is the MQSeries-generated group. Members of this group have 
complete authority on MQSeries resources.

� MilitaryPersonnel: members of this group consume confidential information.

� IntelligenceAgency: members of this group provide confidential information.

� JoeGI: this user belongs to the MilitaryPersonnel and mqm groups.

� JamesB: this user belongs to the IntelligenceAgency, MilitaryPersonnel and 
mqm groups.

� Goldfinger: this user only belongs to the mqm group.
138 MQSeries Publish/Subscribe Applications



All the position information about military convoys will be published on subtopics 
of PublicTransport/Positions/Convoy.

We used the Control Center to restrict publication access on this topic to group 
IntelligenceAgency (as in Figure 5-14), and subscription access to 
MilitaryPersonnel.

Figure 5-14   Restricting publication access to a confidential topic 

Similarly we denied publish and subscribe access to the protected topic to 
PublicGroup. The reason for this will become apparent as we proceed in the 
example discussion.

The final results shown by the Control Center should be like those in Figure 5-15 
on page 140. The new ACL can now be deployed to the broker by clicking 
File->Deploy->Delta configuration (all types).
 Chapter 5. Migration to MQSeries Integrator 139



Figure 5-15   An ACL as displayed by the Control Center 

When setting ACLs we only used group principals. Similar results could be 
obtained by using the user ID directly, but in a production environment this entails 
a bigger administrative overhead. No functionality is lost by using just group 
principals. In fact, the UNS delivers updated group membership information to all 
its client brokers for them to perform the actual user access control.

Running the publisher and the subscriber applications
Before starting the Vehicle publisher, edit its property file to include at least a new 
vehicle on a route with the Convoy mode. Since some of the features we will 
discuss are based on the fact that the position information is published as 
retained, you should:

� Edit the publisher program properties file and set the pubType property to 2 
(this will force the publisher to use AMI).

� Check that the VEHICLE.POSITION.PUB.POLICY policy in your AMI 
repository id set to publish as retained.

A suitable properties file named convoy_pub.properties is included in the 
additional material accompanying this redbook. You can rename it pub.properties 
and copy it into your publisher application directory.

Let’s now review the results obtained by running the publisher and the subscriber 
application, logging to the system using the three involved user IDs in turns.

JamesB results
All the publication messages produced by user JamesB are received and 
displayed by the subscriber GUI. These messages can be classified in for 
groups:

� Public positions: the user can publish and subscribe to these messages 
because the ACL inherited from the root topic allows him to do so.
140 MQSeries Publish/Subscribe Applications



� Classified positions: the user can publish and subscribe to these messages 
because the ACL inherited from PublicTransport/Positions/Convoy allows 
him to do so.

� Alerts (public): the user can publish and subscribe to these messages 
because the ACL inherited from the root topic allows him to do so.

JoeGI results
Not all the publication messages produced by user JoeGI are received and 
displayed by the subscriber GUI:

� Public positions: published and received.

The user can publish and subscribe to these messages because the ACL 
inherited from the root topic allows him to do so.

� Classified positions: not published (and thus not received).

The ACL inherited from PublicTransport/Positions/Convoy does not allow the 
user to publish on these type of messages, but he can subscribe to them. 
This is demonstrated by the fact that as soon as the subscriber application 
starts it receives the retained classified position messages previously 
published by the authorized user JamesB.

� Alerts (public): the user can publish and subscribe to these messages 
because the ACL inherited from the root topic allows him to do so.

The failed attempt by JoeGI to publish on a topic he is not authorized leaves an 
audit trail message in the Windows 2000 Event Log (Figure 5-16 on page 142).
 Chapter 5. Migration to MQSeries Integrator 141



Figure 5-16   Topic access denied Windows 2000 Event Log message 

A similar error message is not produced by the subscription side, but even if the 
subscriber application subscribes to topics matching the pattern 
PublicTransport/*, the broker will quietly forward only the publication messages 
on the subtopics to which to subscriber has subscription access.

Goldfinger results
Not all the publication messages produced by user Goldfinger are received and 
displayed by the subscriber GUI:

� Public positions: published and received.

The user can publish and subscribe to these messages because the ACL 
inherited from the root topic allows him to do so.

� Classified positions: not published (and thus not received).

The ACL inherited from PublicTransport/Positions/Convoy does not allow the 
user to publish on these type of messages, nor he can subscribe to them This 
is demonstrated by the fact that as soon as the subscriber application starts it 
receives some retained position messages, but not the convoy-related ones 
(previously published by the authorized user JamesB), because an ACL 
prevents the user from receiving them.
142 MQSeries Publish/Subscribe Applications



� Alerts (public): the user can publish and subscribe to these messages 
because the ACL inherited from the root topic allows him to do so.

The test creates an audit trail similar to the one created for the JoeGI test.

Final considerations
This example shows several interesting points about ACL inheritance.

The first thing to notice is that all the access control checks in the example are 
based upon inherited ACL, in particular:

� Applications publishing or subscribing to alert information inherit the ACL from 
the topic root, that is no explicit ACL has been created on this topic subtree.

� Applications publishing or subscribing to classified positions always deal with 
subtopics of the PublicTransport/Positions/Convoy topic, and inherit the 
ACL from this latter topic.

� Applications publishing or subscribing to public positions inherit the ACL from 
the topic root, that is no explicit ACL has been created on this topic subtree.

Another interesting point is that the ACL element preventing Goldfinger from 
publishing or subscribing to classified positions is the PublicGroup explicitly 
being denied access to the topic PublicTransport/Positions/Convoy.

If we omitted this element from the ACL, the Goldfinger ACL on that topic would 
have been inherited from the root topic that by default enables access to 
everyone.

An easy way to lock Goldfinger out of the whole publish/subscribe domain would 
be to deny him access to the root topic as shown in Figure 5-17 on page 144.

Tip: When you are restricting access to a topic, always deny access to the 
Public Group within the topic ACL, or ensure that the Public Group rights on 
ancestor topics (for example, the root topic) are set to a safe value.
 Chapter 5. Migration to MQSeries Integrator 143



Figure 5-17   Locking Goldfinger out of the publish/subscribe domain 

Another anomaly weakens the security of our example: alerts referring to military 
convoys vehicles in the real world would be as confidential as the classified 
position messages; unfortunately there is no way to enforce the intuitively 
needed access control check, because all alert messages share the same 
PublicTransport/Alerts topic.

In general, there is no way in MQSeries Integrator to implement content-based 
access control on single publish/subscribe messages.

5.3  Other forms of interoperability
MQSeries Publish/Subscribe interoperability with MQSeries 
Integrator Publish/Subscribe can be seen from three points of view:

� Application-level interoperability: execution of MQSeries Publish/Subscribe 
applications against an MQSeries Integrator.

� Migration/upgrading: migration of an established production 
MQSeries Publish/Subscribe broker to MQSeries Integrator (including 
retained publications, registered subscriptions, registered publications and 
topology information).

� Broker-to-broker interoperability: setup and management of mixed 
MQSeries Publish/Subscribe and MQSeries Integrator broker networks.

The first aspect has been completely covered by the initial part of this chapter. 
We will now touch quickly on the other two aspects.

Tip: consider security-related issues when designing the topic hierarchy.
144 MQSeries Publish/Subscribe Applications



5.3.1  Mixed broker networks
A mixed broker network is a hierarchy of MQSeries Publish/Subscribe brokers 
and MQSeries Integrator brokers. There are no constraints on the position of a 
particular type of broker in the hierarchy.

For example an MQSeries Integrator broker can be the child of an 
MQSeries Publish/Subscribe or vice versa.

Most of the general concepts and building techniques of MQ Publish/Subscribe 
broker networks still apply to mixed broker networks.

To prepare an MQSI broker to belong to an MQ Publish/Subscribe network, there 
are some preliminary actions to perform:

� You must create the default stream queue 
SYSTEM.BROKER.DEFAULT.STREAM and deploy a message flow to serve 
it. For example you can use the Default Publish/Subscribe message flow 
provided in the MQSeries Integrator samples workspace import file.

� For each stream that MQSeries Integrator broker will support, you must 
create a local queue named after the stream and deploy a message flow to 
serve it. For example you can modify the Default Publish/Subscribe message 
flow provided in the MQSeries Integrator samples workspace import file.

� You must create the local queue on which the broker will receive messages 
from neighbor brokers. This queue should be named 
SYSTEM.BROKER.INTER.BROKER.COMMUNICATION. The message flow 
serving this queue will be automatically created and deployed by MQSeries 
Integrator.

Now that the MQSeries Integrator broker internal configuration is ready, we must 
graft the broker to an existing hierarchy tree.

If the broker will be included in the network as a leaf node, you simply need to 
use the mqsijoinmqpubsub command to specify the name of the parent broker.

If the broker is included as intermediate node in a network, you must:

� Sever existing MQSeries Publish/Subscribe broker connections using the 
MQSeries Publish/Subscribe command clrmqbrk. 

� Create all the connections from child brokers to the new MQSeries Integrator 
broker using MQSeries Publish/Subscribe command strmqbrk using the -p 
option to pass the name of the parent broker

� Specify the name of the MQSeries Integrator broker parent using the 
mqsijoinmqpubsub command.
 Chapter 5. Migration to MQSeries Integrator 145



Subscriptions and publications propagation works in a mixed broker network in 
the same manner as in a pure MQSeries Publish/Subscribe broker network.

See 5.3.3, “Example - mixed broker networks” on page 146 for a discussion of a 
mixed broker network.

5.3.2  Migrating an MQSeries broker to MQSeries Integrator
The migrating process of MQSeries Publish/Subscribe broker to MQSeries 
Integrator broker will migrate the following items:

� Information about neighbor brokers

� Subscriptions

� Local publishers identities

� Retained messages on the default stream and all other user-defined streams

To migrate an MQSeries Publish/Subscribe broker you will have to:

� Define the MQSeries Integrator broker using the command mqsicreatebroker 
specifying the optional -m option that requests the migration

� Use the MQSeries Publish/Subscribe command migmqbrk 

� Deploy message flows to serve the default stream and all other user-defined 
streams, as discussed in 5.3.1, “Mixed broker networks” on page 145

5.3.3  Example - mixed broker networks
In a production environment the architecture Figure 5-5 on page 123 may have 
been the last step of a staged migration to MQSeries Integrator from an 
MQSeries Publish/Subscribe environment.

If this was the case, maybe the Dover site would have been the last to be 
migrated, given that its requirements were less demanding than the London site.

During the transition period, Dover MQSeries Publish/Subscribe broker would 
have been reporting to the already migrated PublicTransport broker without 
disruption of the service.

The root MQSeries Integrator broker would have defined a set of message flows 
servicing the stream queue supported by Dover, in order to publish the 
information on the general MQSeries Integrator broker domain network.

Important: the migration of an MQSeries Broker to MQSeries Integrator is not 
reversible.
146 MQSeries Publish/Subscribe Applications



The Control Center would not have shown the MQSeries Publish/Subscribe 
broker at Dover, but relevant topological information could have been retrieved 
by running the command

mqsilistmqpubsub PublicTransport

at the PublicTransport MQSeries Integrator broker.
 Chapter 5. Migration to MQSeries Integrator 147



148 MQSeries Publish/Subscribe Applications



Chapter 6. Web enablement

This chapter describes the migration of the Java stand-alone subscriber 
application discussed in Chapter 3, “Example application” on page 19 to the 
WebSphere Application Server.

The publishing side of the application remains unchanged.

6

© Copyright IBM Corp. 2001 149



6.1  A simple Web-based subscriber
This chapter discusses the migration of a stand-alone application to a 
Web-based application with minimal changes to the existing application.

The best way to do this is to adopt a servlet-based solution, in which the servlet 
will cater to the browser request, contact the application bean and pass the 
necessary information. In turn the bean will process and return the result and the 
servlet will pipe back the output to the browser as a response.

Hence the core business logic and processing steps of the application bean 
remain the same except for a few changes to the interface of the bean, in order 
to accommodate servlet-specific calls. 

In this Web scenario we demonstrate the use of a temporary dynamic queue as a 
subscription queue. When a temporary dynamic queue is specified as a 
subscription queue, the MQSeries Integrator Broker automatically deletes the 
subscription associated to it as soon as it discovers that the queue has been 
deleted (that is, the owning subscriber application is terminated without 
unsubscribing).

In order to keep the subscription lifetime to a minimum (optimizing the broker 
performance), the subscribing applications should explicitly deregister under 
normal circumstances. The automatic deregistration feature is intended only to 
avoid orphaned subscriptions in abnormal situations.

The steps required to port an existing subscriber application to a Web-based 
application in the WebSphere environment include:

� WebSphere Application Server configuration
� Servlet configuration
� AMI Repository configuration
� Program invocation 
� Discussion of the Web part of the application

Important: Automatic subscription deregistration works only if the temporary 
dynamic subscription queue is local to the broker queue manager (otherwise, 
the broker would not be able to tell that it is a temporary dynamic queue) and 
is not accessed via an alias.

Note: In this Web-based subscriber application, we are only demonstrating 
the usage of a temporary dynamic queue in the AMI environment. The same 
application can be executed with a local queue as the subscriber queue by 
changing the subscriber and policy in the AMI repository.
150 MQSeries Publish/Subscribe Applications



6.1.1  WebSphere Application Server configuration
We will create a Web application named “itso” and configure the servlet.

The following section covers the steps to create a Web application. Refer to the 
WebSphere V3.5 Handbook, SG24-6161 for more information.

1. Start the WebSphere Application Server Administrator console by clicking 
Start->Programs -> IBM WebSphere -> Application Server 3.5 -> 
Administrator’s Console.

2. Create a Web application named itso by clicking Wizard -> Create a Web 
Application. Leave the default option as it is and click Next as shown in 
Figure 6-1.

Figure 6-1   Step (1-4) to create a Web application 

3. Select Default Servlet Engine as the parent Servlet Engine and click Next to 
display the window shown in Figure 6-2 on page 152.
 Chapter 6. Web enablement 151



Figure 6-2   Step (2-4) to create a Web application 

4. Change the Web Application Web Path to /itso as shown in Figure 6-3 and 
click Next.
152 MQSeries Publish/Subscribe Applications



Figure 6-3   Step (3-4) to create a Web application 

5. By default WebSphere specifies a default classpath and document root. 
Leave the default and click Finish as shown in Figure 6-4 on page 154. The 
Web application itso will be created.
 Chapter 6. Web enablement 153



Figure 6-4   Step (4-4) to create a Web application 

6. Since we have chosen the default classpath and document root, we must 
create the required folders as follows:

a. Create a folder called “itso” in the 
C:\WebSphere\AppServer\hosts\default_host path, where 
C:\WebSphere\AppServer is the WebSphere root.

a. Create servlets and a folder called “Web” under the itso folder. The 
servlets folder should contain all the Java class files, whereas the Web 
folder should have the HTML pages, since we chose the Enable File 
Servlet option in step 1.

7. Copy the JAR file that contains the application class files into the 
C:\WebSphere\AppServer\hosts\default_host\itso\servlets folder, where 
C:\WebSphere\AppServer is the WebSphere root directory. Copy the HTML 
files into the C:\WebSphere\AppServer\hosts\default_host\itso\web folder. 
Refer to Appendix D, “The GUI-based subscriber application” on page 205 for 
the required JAR file and HTML file name. 
154 MQSeries Publish/Subscribe Applications



6.1.2  Servlet configuration
The next step is to configure the servlet: 

1. Right- click the ITSO Web application and create a servlet, as shown in 
Figure 6-5.

Figure 6-5   Step(1-2) to create and configure a servlet 

2. In this step supply the servlet name as WebSubscriber and servlet class name 
as com.ibm.itso.swa111.subscribe.web.WebSubscribe as shown in 
Figure 6-6 on page 156 and click Add. Then add the servlet Web path name 
as WebSubscriber and click OK. The WebSubscriber servlet is created.

Important: Users have the ability to decide where to put servlets and other 
class files, which may be different from the Web application default classpath.
 Chapter 6. Web enablement 155



Figure 6-6   Step (2-2) of servlet creation on WebSphere 

3. In this step, we assign the initial parameter to the servlet as shown in 
Figure 6-7 on page 157. The init parameter entries are shown in Table 6-1 on 
page 157.
156 MQSeries Publish/Subscribe Applications



Figure 6-7   Setting up the Init parameter of servlet 

Table 6-1   Init parameter list of the servlet WebSubscriber

Init Param Name Init Param Value

hostfilename amthost.xml

repositoryname amt.xml

sessionname VEHICLE.WEB.SESSION

policyname VEHICLE.SUB.POLICY

subscribername VEHICLE.SUBSCRIBER

messagereceiver VEHICLE.WEB.RECEIVER.MSG

messagesubscriber VEHICLE.WEB.SUBSCRIBER.MSG

WAITTIME 2000

TOPICNAME PublicTransport/*
 Chapter 6. Web enablement 157



6.1.3  AMI repository configuration
Since we are using a dynamic queue for subscription, we define a new policy 
VEHICLE.WEB.SUB.POLICY and a new subscriber 
VEHICLE.WEB.SUBSCRIBER. In the following sections we discuss the 
important properties to be configured in the policy and subscriber.

1. Create a service point VEHICLE.WEB.SUB.DYNAMIC, which will represent a 
dynamic queue. We will use SYSTEM.DEFAULT.MODEL.QUEUE as the 
model queue name and VEHICLE.WEB.DYNAMIC.* as the dynamic queue 
prefix. If the last non-blank character in positions 1 to 33 of the prefix is '*', 
then the '*' is replaced by a string that guarantees that the name generated is 
unique. Ensure the definition type of the model queue is temporary.

2. Create Subscriber VEHICLE.WEB.SUBSCRIBER. Assign 
BROKER.CONTROL.QUEUE as the sender service and 
VEHICLE.WEB.SUB.DYNAMIC as the receiver service.

3. Create policy VEHICLE.WEB.SUB.POLICY.

a. Specify the persistence of the message to No as shown in Figure 6-8 on 
page 159. This is an important step in configuring a temporary dynamic 
queue to use as the subscriber queue.

b. Make sure the Wait Interval Read Only property is unchecked.

c. Set the Use CorrelId As Id property to true.

Note: The init parameter list is similar to the entries of subscriber.properties 
file as discussed in 4.10, “Sample subscriber application” on page 96. When 
the servlet loads in the application server, all the init parameters are passed to 
the servlet.

Important: Since the broker does not publish a persistent message to a 
temporary dynamic queue, the subscriber sets the send message type to 
non-persistent in order to also receive the persistent message.
158 MQSeries Publish/Subscribe Applications



Figure 6-8   Configuring VEHICLE.WEB.SUB.POLICY f

6.1.4  Program invocation
Copy the Start.html file into the Web folder of the Web application itso. Then type 
the following URL in the browser:

http://hostname/itso/Start.html 

where hostname is the name of the server on which the WebSphere Application 
Server is running. Refer to the additional materials accompanying this redbook 
for code snippets.

The output is shown in Figure 6-9 on page 160.
 Chapter 6. Web enablement 159



Figure 6-9   Output of simple Web-based subscriber application

Click the Refresh button to see the latest messages.

6.1.5  Discussion about the Web part of the application
This Web-based application is a straightforward migration of the simple 
stand-alone subscriber as discussed in 4.10, “Sample subscriber application” on 
page 96, in which the main appeal is to keep the core functionality the same as 
the existing one.

As in the application discussed in that section, the subscriber application 
receives messages instantly as they become available on the broker.

The advantage of the stand-alone GUI application is that it subscribes once and 
then is always in receive mode, but the disadvantage is that it lacks the ability to 
reach out to the wider audience as a Web-equivalent application would.
160 MQSeries Publish/Subscribe Applications



Porting the stand-alone application to the Web is a generalized choice, but in this 
case we have to compromise on certain behavioral aspects of the application, 
such as not having any automatic update to the message window on the Web.

In a typical Web scenario, the pull model is very much the preferred choice over 
a push model. In the former model, the end user’s request pulls the information 
from the server, so we can say the pulled information is a snapshot of the 
information available at the moment of request. In the latter model, the server 
maintains a dedicated client connection and is responsible for pushing all 
information to the client.

In our example, we follow the pull model. These are the steps involved:

1. On each request, the user subscribes to the topic PublicTransport/* .

2. Depending on the availability of messages, the user may receive messages 
for that subscribed topic at that instant of time.

3. Subsequently the user unsubscribes.

We implement a servlet-based solution in which the steps are demonstrated in 
Figure 6-10 sequentially. 

Figure 6-10   Stages involved in a servlet -based Web subscriber application 

The following are the stages involved in a Web-based subscriber application:

1. The servlet gets loaded into the application server, retrieves all the init 
parameter values, and assigns it to a WebSubscriberInit data bean. 
Subsequently it invokes the init() method of the AMI subscriber application 
and passes the WebSubscriberInit data bean (shown as a solid arrow and 
marked 1.Init() in Figure 6-10). The WebSubscriberInit data bean carries the 

Note: In Figure 6-10, the dotted portion illustrates the steps that are repetitive. 
The solid arrow 1.init() is out of the dotted portion, thus illustrating the fact that 
it is an one-time operation.

SERVLET
Browser

AMI Subscriber
Application

1. Init()

3. Open()

4. Subscribe()

7. UnSubscribe()
5. Receive()

8. Close()

2 . HttpRequest

6. HttpResponse
 Chapter 6. Web enablement 161



information relevant to the AMI Subscriber application to create an AMI 
session.

super.init(config);
initData = new WebSubscriberInit();
initData.hostfileName=getInitParameter("hostfilename");
initData.repositoryName=getInitParameter("repositoryname");
initData.sessionName=getInitParameter("sessionname");
initData.policyName=getInitParameter("policyname");
initData.subscriberName=getInitParameter("subscribername");
initData.messageReciver=getInitParameter("messagereceiver");
initData.messageSubscriber=getInitParameter("messagesubscriber");
initData.waitTime=getInitParameter("waittime");
initData.topicName=getInitParameter("topicname");
sub=new com.ibm.itso.swa111.subscribe.SubscriberAMI();
sub.init(initData);

Refer to 4.10, “Sample subscriber application” on page 96 for details on the 
operation of an AMI subscriber application.

2. The Web user request for subscription in the form of an HTTP GET request. 
Inside the servlet the GET request will be delegated to the performTask() 
method.

public void doGet(HttpServletRequest request,HttpServletResponse response) 
throws javax.servlet.ServletException, java.io.IOException {
performTask(request, response);
}

3. In the performTask() method, an AMI session is created by invoking the 
open() method of the AMI subscriber application.

sub.open();

4. Then subscribe to the topic by invoking the subscribe() method of the AMI 
subscriber application:

sub.subscribe(initData.getTopicName());

5. The servlet invokes the receive() method of the application bean and receives 
messages. The receive() method will be invoked continuously until there are 
no messages left in the subscriber queue. The receive() method returns the 
result in the form of a SubscriberData data bean.The servlet returns the 
HTML output built with the received message:

sd=new com.ibm.itso.swa111.subscribe.SubscriberData();
sd=sub.receive();

6. Soon after the previous step, the servlet unsubscribes the requested user by 
invoking the unsubscribe() method of the AMI subscriber application:

sub.unsubscribe(initData.getTopicName());
162 MQSeries Publish/Subscribe Applications



7. Then the session is closed by invoking the close() method of the AMI 
subscriber application:

sub.close();

6.2  Comments and extensions
This second application scenario demonstrates how easily information can be 
delivered to Web users via publish/subscribe messaging. The key feature 
needed to easily obtain good results is again retained publications.

The reason for this is that the Web application subscription lifetime is negligible, 
so the information displayed will be the one already retained by the broker at the 
moment the subscription request is received.

This second application scenario still suffers from several limitations:

� Unfortunately this approach is not a good fit for event information such as the 
Alert and Breakdown messages. Typically these messages will not be shown 
on the Web interface because the probability is small that a subscription for 
them is in place when they reach the broker.

� The other limitation is that the publishing side cannot be implemented using 
JMS (which does not support retained publications) when the subscribing 
side is Web-based.

� Given that JMS is part of the J2EE specification, the pattern where both the 
producer and the consumer of messages is a JMS application is expected to 
be a typical one.

� There is not an immediate way to implement the Web application in order to 
deliver such value-added services as computation of vehicle position 
forecasts.

All these issues will be addressed by extending the current version of the 
application in Chapter 7, “Advanced Web enablement” on page 165.

The Web application subscriber we presented in this chapter is not backward 
compatible with MQSeries Publish/Subscribe brokers, because we used a 
temporary dynamic queue as subscription queue. This feature is only supported 
by MQSeries Integrator brokers.

If for some reason the application must also support MQSeries 
Publish/Subscribe brokers (ignoring the benefits coming from MQSeries 
Integrator listed in Chapter 5, “Migration to MQSeries Integrator” on page 115), 
all that’s needed is a modification to the AMI repository definition for the receiver 
specified for the VEHICLE.WEB.SUBSCRIBER subscriber object.
 Chapter 6. Web enablement 163



164 MQSeries Publish/Subscribe Applications



Chapter 7. Advanced Web enablement

In the first part of this chapter we will extend the example application discussed 
in Chapter 6, “Web enablement” on page 149, in order to satisfy these new 
requirements:

� Support for JMS publishers

� Support for JMS subscribers

� Publication of comprehensive position forecast data for each vehicle, taking 
into consideration current traffic conditions, accidents and breakdowns

In the second part of this chapter we will extend the Web part of the application 
further, in order to support such complex queries as:

� Listing of all vehicle that are expected to reach a certain stop within a 
specified range of time

� Listing of all vehicles that just broke down or are significantly delayed by 
accidents

� Any combination of the above

7

© Copyright IBM Corp. 2001 165



7.1  Concept
The most demanding requirement to accommodate is the support for JMS 
publishing applications, because as we discussed in the previous chapter, Web 
subscriptions are extremely short lived, so the use of retained publication is 
almost unavoidable. On the other hand, JMS cannot publish in a retained 
fashion.

The second difficult requirement to accommodate is the publication of forecasts. 
The problem here is that to compute new forecasts (for example, predicting the 
effect of an accident on a route), access to the most current forecast is 
sometimes needed, that is, forecasts must be retained.

If forecasts are retained, the existing publisher is not a good candidate to publish 
them (it can be a JMS application), nor is the subscriber (it can be a JMS 
application, and being Web-based it must be as lightweight as possible).

The correct approach to satisfy the new requirements respecting all the above 
constraints seems to be the implementation of a new application, the Forecast 
application, which resides between the existing publisher application and the 
Web subscribers.

7.1.1  A new middle tier component
The Forecast application is implemented as a permanently subscribed 
application receiving position and alert messages published by the vehicles. 
Given that this application is always subscribed, the information can be 
published in a non-retained fashion without the risk of the broker discarding it for 
the lack of matching subscribers. Thus, JMS publishers can be fully supported.

All the positions and alerts are used by the Forecast application to produce a 
message for each vehicle containing the expected time of arrival (ETA) of the 
vehicle for all the remaining stops along the route. This message is published as 
retained (newer forecasts overwrite older ones) on the new subtopic root 
PublicTransport/Forecasts, including the name of the vehicle, the route, the 
geography, and the mode in the full topic name.

The publication of retained forecasts not only serves the unique needs of 
short-lived subscriptions coming from the Web, but also plays the role of a 
context holder for the Forecast application itself. In fact when an old forecast is to 
be amended by a new one, to accurately compute the new one the Forecast 
application sometimes needs to subscribe temporarily to some of the retained 
topics it previously published on (that is, the current forecast for the vehicle for 
which the new forecast is to be computed).
166 MQSeries Publish/Subscribe Applications



This technique uses the broker almost as a database, making it possible to write 
the Forecast application in a simple way, because:

� The application is stateless (the state is persistently maintained by the 
broker).

� The application only deals with one resource manager (the broker) and not 
with a relational database as well; this usually gives performance gains and 
avoids extra complexities such as dealing with more complex transactional 
semantics (for example, global units of work).

Figure 7-1   Use of JMS in the application server 

7.1.2  Architectural considerations
With the above discussed new approach we are able to use the J2EE compliant 
JMS API on both extremities of the messaging flow. In Figure 7-1, we see a 
possible real-life implementation where each vehicle could send its position 
through mobile devices to WebSphere Everyplace Suite and WebSphere 
Application Server publishes this information with the JMS API.

A back-end component applies the business rules on the published information 
and publishes the newly computed data as retained information with AMI or MQI.
 Chapter 7. Advanced Web enablement 167



Web users use their browser to query the current and expected positions of their 
vehicle and when the next vehicle is expected to arrive at their stop. The 
application server then interrogates the message broker with JMS to get the 
required information.

The application we produced is very similar to the one described, apart from the 
publication part where the vehicles and their interaction with a first application 
server is simulated by the publisher application that publishes directly the 
positions and alerts messages on the target broker.

Figure 7-2 gives a general view of the main components making up the 
application described in this chapter.

Figure 7-2   Components used in the global application 

Since the Forecast application needs to publish retained messages, we decided 
to use the AMI API for the messaging part of the application. 

7.2, “Forecast application” on page 169 describes in more detail the Forecast 
application.
168 MQSeries Publish/Subscribe Applications



In 7.3, “JMS Web subscriber application” on page 174 and 7.5, “AMI Web 
application and message filtering” on page 182, we discuss how the newly 
supported features impact the subscription side of the application. 

7.2  Forecast application
The Forecast application is a stand-alone Java application. It is designed as a 
multithreaded application, but given that the multithreading makes the 
application slightly more complex because of the need to obtain and release 
locks and get acknowledgments from the broker, we first discuss the Forecast 
application when there is only a single thread receiving the messages published 
by the vehicles, computing the forecast for this vehicle, and publishing the 
forecast messages.

Figure 7-3   Forecast application logic with a single thread

Figure 7-3 shows the application logic and the message flow of the Forecast 
application when a single threaded application is running.
 Chapter 7. Advanced Web enablement 169



The application is started by the Java class ForecastLauncher. It reads the AMI 
information in the forecast.properties file and also the number of threads needed 
in the application. We decided to provide the possibility of a multithreaded 
application so that the application can scale with the load.

The ForecastLauncher starts the desired number of threads, called 
ForecastThread, for doing the work.

7.2.1  ForecastThread: single-threaded behavior
We describe each step indicated in Figure 7-3 on page 169.

1. The thread subscribes to all the publications sent by the vehicles, both 
positions and alerts. We subscribe to the topics PublicTransport/Positions/* 
and PublicTransport/Alerts/*. We don’t want to subscribe to PublicTransport/* 
as a third topic branch called PublicTransport/Forecasts. Note that in the 
multithreaded implementation, only the first thread subscribes. We subscribe 
every time the application is started and we don’t unsubscribe, so that the 
Forecast applications can handle all the messages even if it is not running.

2. The message broker forwards the vehicle publications to our subscription 
queue. This subscription queue (VEHICLE.FORECAST.SUB.QUEUE) is 
defined in the AMI service point VEHICLE.FORECAST.RECEIVER created in 
the AMI repository.

3. The thread gets a message from the subscription queue using the AMI policy 
VEHICLE.FORECAST.SYNCPOINT_EXPIRY.POLICY. This policy specifies 
that the message is to be taken under syncpoint and that the wait time for 
getting the message is five seconds.

We must now make a distinction based on the type of messages received: 

� If a position message is received, the Forecast application can forecast the 
future positions of the vehicle (the total number of stops and the time spent 
between stops is included in the message).

� If a breakdown message is received, the application has enough data to 
simply publish a last message containing the time and position where the 
breakdown happened.

� If an accident message is received, then the application can’t create a 
forecast message based on this accident message only. It needs to know the 
current forecasts for this vehicle and relay them in accordance with the 
accident information.

For a position and a breakdown message, we skip the following steps 4 to 7 and 
go directly to step 8, whereas when an accident message is received, we must 
go through all steps.
170 MQSeries Publish/Subscribe Applications



4. The thread temporarily subscribes to the forecast topic of that vehicle 
PublicTransport/Forecasts/Mode/Geography/Route/Vehicle. The subscriber 
used is VEHICLE.FORECAST.TEMP.SUBSCRIBER, corresponding to a 
service point VEHICLE.FORECAST.DYN.RECEIVER defined as a temporary 
dynamic queue starting with a prefix VEHICLE.FORECAST and built on the 
model queue SYSTEM.DEFAULT.MODEL.QUEUE.

5. The temporary queue is created and the broker forwards the forecast 
message to it.

6. The thread gets the forecast message from the temporary queue.

7. The thread unsubscribes from that topic. The temporary queue gets deleted.

8. The thread now has enough data to compute the forecast for the vehicle. It 
creates the forecast message and publishes it to the forecast topic for that 
vehicle (/PublicTransport/Forecasts/Mode/Geography/Route/Vehicle). The 
AMI policy used for the publication is the same policy as the one used for 
receiving the message at step 3: 
VEHICLE.FORECAST.SYNCPOINT_EXPIRY.POLICY, which means that the 
publication also is under syncpoint. 

9. We commit the transaction started at step 3, that is the reception of the 
position or alert message and the publication of the forecast message.

7.2.2  ForecastThread: multithreading behavior
We can change the nbrThreads property in the property file of the application to a 
value greater than 1, in order to make it run in multithreaded mode. The 
multithreaded behavior is roughly the same as if there were just one thread.

But when more than one thread is running, we must ensure that two different 
threads are not handling two messages for the same vehicle at the same time, 
for example, a position message and an accident or breakdown message.

Important: The Forecast application can potentially receive messages with a 
MQRFH1 header, a MQRFH2 header or both. Therefore when parsing the 
message, we must first check the type of header. 

The MQRFH1 header is removed automatically so that we only have the 
payload data. 

If a MQRFH2 header is present (that is, the message publisher was a JMS 
application), we must remove it by reading at the right offset the length of the 
MQRFH2 header and skipping it.
 Chapter 7. Advanced Web enablement 171



Therefore, we must add a few steps in the logic described in the previous 
section. Figure 7-4 shows the logic flow of the Forecast application when in 
multithreading operation mode.

Figure 7-4   Forecast application logic with multiple threads 

Only the first thread subscribes to the position and alert topics, because all 
threads are consuming from the same subscription queue and are considered as 
one single subscriber. We certainly don’t want the messages to be duplicated for 
each thread.

1. Similar to single-threaded behavior, the broker forwards the publications 
published by the publisher application to the subscription queue used by the 
Forecast application.

2. All threads are consuming in parallel the messages from the subscription 
queue.

3. Similar to single-threaded behavior, when the publication is an accident, the 
thread subscribes to the forecast topic for receiving the current forecast for 
the vehicle that had an accident.

4. Similar to single-threaded behavior, the broker forwards the forecast 
message to a temporary dynamic queue. Each thread has its own temporary 
dynamic queue.

5. Similar to single-threaded behavior, the thread consumes the forecast 
message from the temporary queue and the queue is closed and deleted.
172 MQSeries Publish/Subscribe Applications



6. Now to an additional step: the thread gets a lock on the topic to which the 
forecast message for the vehicle will be published. For this lock, we use 
synchronized access to a singleton class shared between the threads. In this 
class, we check out and check in the topic string to which we publish in order 
to get and release the lock.

7. The thread publishes the forecast message. In contrast with the 
single-threaded model, we specify a receiver service point in the overloaded 
publish Java method of the AmPublisher class to ask a confirmation from the 
broker that the publication message has been handled. We will need this 
broker response in order to be able to release the lock on the topic. The 
receiver defined in the AMI repository is 
VEHICLE.FORECAST.DYN_RES.RECEIVER. It indicates that a temporary 
dynamic queue is to be used, built on the default model queue 
SYSTEM.DEFAULT.MODEL.QUEUE and whose name must be prefixed with 
VEHICLE.FORECAST.RESPONSE.

8. Similar to single-threaded behavior, the reception of the position or alert 
publication and the publication of the forecast are committed.

9. Multithreaed applications now have three additional steps. After committing 
the publication, the broker consumes the publish command on the publication 
queue and sends the confirmation to the temporary dynamic queue. Each 
thread uses its own temporary dynamic queue, the same for a thread lifetime.

10. The second additional step: the response sent by the broker is received by 
the thread.

11. The third additional step: after receiving the broker confirmation, the thread 
releases the lock he had acquired on the topic. Note that when running in 
multithreaded mode, the Forecast application requires the broker to be 
running, since it needs to receive responses from it.

7.2.3  The forecast message
The forecast publication message used by the application needs to contain the 
stop number and the estimated time of arrival,for each stop ahead on the route of 
the vehicle. Figure 7-5 on page 174 shows an example of such a forecast 
publication message.
 Chapter 7. Advanced Web enablement 173



Figure 7-5   forecast XML message

Since each vehicle on each route has its own topic, we decided not to duplicate 
this information by adding it in the message itself. We’ll see in 7.4.1, “Using 
MQSeries Integrator to tweak publication content” on page 180 that this design 
choice has some important impact.

7.3  JMS Web subscriber application
The Web subscriber application is an extension of the one we discussed in 
Chapter 6, “Web enablement” on page 149 and is an ideal J2EE implementation.

In this case the Web user will get the opportunity to subscribe to a particular topic 
string as well as to all topics, rather than having the only option of subscribing to 
the root topic, as discussed in Chapter 4, “The publish/subscribe application” on 
page 27 and Chapter 6, “Web enablement” on page 149.

We will adopt the same servlet-based solution as discussed in Chapter 6, “Web 
enablement” on page 149. In this case the servlet will also cater for the browser 
request, contact the subscriber application bean, and pass the request. In turn, 
the bean will process and return the result, and the servlet pipes back the output 
to the browser as a response. In this case the subscriber application bean is a 
pure JMS implementation.

In the following sections we discuss:

� Servlet configuration
� Program invocation
� Program flow
� Using MQSeries Integrator to tweak publication content
174 MQSeries Publish/Subscribe Applications



7.3.1  Servlet configuration
Refer to 6.1.2, “Servlet configuration” on page 155 for help with servlet 
configuration. The init parameters that are required are:

1. jmscontext -  The value of Initial context factory 
com.ibm.ejs.ns.jndi.CNInitialContextFactory. This value is valid for the 
persistent Name Server provided by WebSphere Application Server. 

2. jmsurl - iiop://hostname/, where hostname is the name of the machine where 
the persistent service is running.

3. jmsrefferal - In our example, this parameter is not relevant. If we use LDAP 
services, then we need this parameter.

4. jmstcf - TopicConnectionFactory name. 

5. jmswaittime - A period of time (in milliseconds) that the JMS subscriber waits 
for a message to be available. 

Refer to 7.5.3, “Servlet configuration” on page 184 for init parameter values.

7.3.2  Program invocation
Copy the sample PTInput.html file into the Web folder of the Web application 
itso and type the following URL in the browser:

http://hostname/itso/PTInput.html

You will see a window like the one shown in Figure 7-6 on page 176.
 Chapter 7. Advanced Web enablement 175



Figure 7-6   Forecast Input window 

This input Web page prompts the user to subscribe to a specific topic string. By 
default all the options are marked as ‘*’ (asterisk), which means the topic string is 
the same as PublicTransport/Forecasts/*. Otherwise, the topic string will be 
formed as per the following entries:

The hierarchy of fields in the topic string is 
PublicTransport/Forecasts/Mode/Geography/Route/Vehicle
If Mode=Tube,Geography=London,Route=RouteA,Vehicle=UT221, then the topic string 
would be PublicTransport/Forecasts/Tube/London/RouteA/UT221
If Mode=* and the rest of the fields have some value other than *, then the 
topic string would be PublicTransport/Forecasts/*.

We click the Subscribe button to subscribe to that topic and it receives a 
message (if there is any retained message published to the broker for that 
specific topic) as shown in Figure 7-7 on page 177.
176 MQSeries Publish/Subscribe Applications



Figure 7-7   Topic-based Forecast message subscription 

The output message displays each vehicle's expected time of arrival (marked as 
'F') at that stop number as well as the current position (marked as 'C'). It also 
displays the accident and breakdown messages (marked as 'A' and 'B' 
respectively). The vehicle ID is in the format Mode/Geography/Route/Vehicle, 
which can be extracted from the topic (which is in the format 
PublicTransport/Forecasts/Tube/London/Route) to which the user subscribed. 
Please see 7.4.1, “Using MQSeries Integrator to tweak publication content” on 
page 180 for a detailed discussion of the extraction of the vehicle ID from the 
topic.

We can either re-subscribe with the old topic string by clicking the Refresh 
button, or we can go back to the previous window shown in Figure 7-6 on 
page 176 to subscribe to a new fresh topic.
 Chapter 7. Advanced Web enablement 177



7.4  Program flow of the application
In this section we discuss the program flow of our subscriber application.

The forecast messages that are published to the broker are in retained form. 
Hence the subscriber application always gets a message for the topic to which it 
subscribed, provided there was a publication on that topic before.

The approach to this servlet-based Web solution is similar to the one we have 
adopted in Chapter 6, “Web enablement” on page 149. Let’s discuss the program 
flow. 

1. The servlet gets loaded into the application server, and the init() method gets 
executed.

a. It retrieves the init parameter values and assigns it to a data bean 
WebSubscriberInit.

super.init(config);
initData = new com.ibm.itso.swa111.subscribe.web.WebSubscriberInit();
initData.jmsContext=getInitParameter("jmscontext");
initData.jmsUrl=getInitParameter("jmsurl");
initData.jmsReferral=getInitParameter("jmsreferral");
initData.jmsTcf=getInitParameter("jmstcf");

b.  Subsequently it invokes the init() method of the JMS subscriber 
application and passes the data bean, which carries the information 
relevant to the JMS subscriber application to initialize JMS environment. 

sub=new com.ibm.itso.swa111.subscribe.SubscriberJMS();
sub.forecastInit(initData);

c. The servlet uses the MQ connection pool available underlying the MQ 
transport layer. Hence we can leverage the power of the MQ connection 
pooling by having multiple sessions running together.

token = MQEnvironment.addConnectionPoolToken();

d. The forecastInit() method of the JMS application bean sets up the JMS 
environment.

CTX_FACTORY = subinit.getJmsContext();
INIT_URL = subinit.getJmsUrl();
env = new Hashtable();
env.put( Context.INITIAL_CONTEXT_FACTORY, CTX_FACTORY );
env.put( Context.PROVIDER_URL, INIT_URL );
env.put( Context.REFERRAL, subinit.getJmsReferral() );
Context ctx = new InitialDirContext( env );
tcf = (TopicConnectionFactory)ctx.lookup(subinit.getJmsTcf());
178 MQSeries Publish/Subscribe Applications



2. When a user subscribes, the servlet performs the following steps:

a. Invokes the forecastOpen() method of the subscriber application bean. 
Inside the open method, we create a topic connection and then a session. 
Then we start the connection:

tConn = tcf.createTopicConnection();
tSess = tConn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE );
tConn.start();

b. Next the servlet invokes the forecastSubscribe() method of subscriber 
application bean. Inside this subscribe method, we create the topic and 
create a subscriber:

t = tSess.createTopic(topicName);
tSub = tSess.createSubscriber(t);

c. Next the getForecastMessage() of the subscriber application bean is 
invoked, which returns the message to the servlet:

msg = (TextMessage)tSub.receive(MESSAGE_WAIT_TIME);

The above step continues until there are no more messages in the subscriber 
queue. The servlet returns the HTML output built with the received message 
as shown in Figure 7-7 on page 177.

3. After the message is displayed we unsubscribe by invoking 
sub.forecastUnsubscribe(topicname), which does the following operation in 
the subscriber application bean:

tsub.close()

4. Finally we close the session and the connection by invoking 
sub.forecastClose(). We close the session and the topic connection:

tSess.close()
tConn.close()

Important: The MESSAGE_WAIT_TIME parameter is the time period for 
which the subscriber application waits for the arrival of the next message. 
In a Web scenario where response time is a key factor, the 
MESSAGE_WAIT_TIME value should be kept to a minimum, keeping in 
mind the end users’ expectations of response time.
 Chapter 7. Advanced Web enablement 179



Note: We must remove the MQ connection pool token from the environment 
when it is no longer being used. In the destroy() method of the servlet we can 
add the following code: 

MQEnvironment.removeConnectionPoolToken(tokenname);

7.4.1  Using MQSeries Integrator to tweak publication content
The JMS Web subscriber needs to parse the topic name in order to extract the 
Mode, Geography, Route and Vehicle fields. When the messages are published 
by a JMS application, the topic name is stored in a field of the JMS embedded 
MQRFH2 header. Unfortunately in our case the messages are published by the 
Forecast application that is written to the AMI API (because it publishes in 
retained mode), so this information is not available to the JMS subscriber.

A simple way around this problem is to add a new tag containing the topic inside 
the body of the message, that is, where even a JMS application can have 
access.

We decided not to modify the existing Forecast application (in a production 
environment this could be a legacy application that could not be modified), and 
have MQSeries Integrator do the work.

To achieve this, we built a very simple message flow that is an extension of the 
default publish/subscribe message flow (see Figure 7-8 on page 181) including a 
compute node that adds a tag name VehicleId to the body of the message, 
taking it from the MQRFH header Topic field.

Important: We always close the topic connection at the end of the session 
and request a fresh connection in each new request. Creating a topic 
connection for each request is expensive in a normal scenario when there is 
no connection pooling, whereas in our example we are using 
MQConnectionPool, which is readily available in the MQSeries transport layer. 

Note: The subscription topic pattern is honored, so only the right messages 
are received by the JMS subscriber, but the matched topic cannot be 
programmatically accessed.
180 MQSeries Publish/Subscribe Applications



Figure 7-8   MQSeries Integrator publish/subscribe message flow with message 
augmentation 

This message flow is included in the redbook additional material in the export file 
named JMSForecastPubSubMsgFlow.xml.

7.4.2  Comments and extensions
This Web application scenario demonstrates publish/subscribe messaging in a 
J2EE environment. Because of retained publication, the JMS-based subscriber 
application always receives the messages. 

This application scenario still suffers from the following limitations:

� In JMS Web application, the filter specified with a topic pattern is not specific 
enough to get only the information that is needed for a particular end user 
purpose. The content-based filtering is not supported. 

Note: Before trying to run the JMS subscriber, remember to deploy the 
message flow JMSForecastPubSubMsgFlow.xml to your broker. 

If you already have a deployed publish/subscribe message flow serving the 
queue SYSTEM.BROKER.DEFAULT.STREAM, remember to remove it before 
deploying the new one.
 Chapter 7. Advanced Web enablement 181



� When the JMS subscriber (which receives retained messages) subscribes to 
a given topic during the course of publication of message on the same topic, 
the broker publishes all the retained messages to the subscriber queue. As a 
result, the subscriber gets more than one message for the same topic, which 
is legal but not desirable.

Suppose the publisher is publishing 10 messages for a given topic, At the time of 
fifth message publication, the subscriber subscribes, hence it receives the last 
retained message, that is, the fifth message. It then starts receiving the rest of 
the messages during the course of publication (message 6 to message 10). In 
our example, the subscriber would receive all forecasted information about the 
same vehicle, which is unclear to the user. 

Unfortunately, in JMS there is no easy way to filter the unwanted messages other 
than applying a custom filter condition while receiving the message. In our 
example we implemented the following logic at the JMS subscriber application 
end. 

if (timestamp of received message)<= (timestamp of subscription) 

Then we allow the messages. Failing this condition, we stopped receiving 
messages.

This issue will be addressed by extending the current version of the application in 
7.5, “AMI Web application and message filtering” on page 182.

7.5  AMI Web application and message filtering
In the previous section we discussed JMS-based publisher and Web subscriber 
applications in which the subscriber application can subscribe to a specific topic 
rather than subscribe to the root topic. In this section, we will extend the Web part 
of the application further to content-based subscription. The content-based 
subscription will support complex queries like:

1. Listing of all vehicle that are expected to reach a certain stop within a 
specified range of time

2. Listing of all vehicles that just broke down or are significantly delayed by an 
accident

3. Any combination of the above
182 MQSeries Publish/Subscribe Applications



7.5.1  Content-based subscriptions
The main issue in the JMS Web application is that often the filter specified with a 
topic pattern is not narrow enough to get only the information that is needed for a 
particular end-user purpose. For example, there is no way using only the topic 
filters to receive only the information related to a particular stop on a particular 
route.

To overcome this limitation, we can modify the subscriber application in order to 
exploit the content-based subscription feature that comes with MQSeries 
Integrator. Unfortunately the JMS specification does not support this feature, so 
we will rewrite the relevant application modules using AMI.

The general idea of content-based subscriptions is that of giving the application 
the possibility of passing a complex boolean expression when submitting the 
subscription request. The expression will reference syntactical elements of the 
message.

In MQSeries Integrator the language used to specify filters is the ESQL, which is 
an extension of the SQL language used for relational databases.

The main thing to remember when using content-based subscriptions is that the 
broker must be able to correctly parse published messages in order to evaluate 
filter expressions against them.

In our example application, this is not a problem because we only deal with XML 
messages that are natively supported by MQSeries Integrator, but in general you 
will need to provide the relevant MQSeries Integrator Message Repository 
definitions before using this feature.

7.5.2  Content-based Web subscriber application
We use AMI to build the content-based Web subscriber application. The 
approach for this servlet-based solution is similar to simple Web subscriber 
application as discussed in Chapter 6, “Web enablement” on page 149 and in 
7.3, “JMS Web subscriber application” on page 174. The presentation logic is the 
same as in the previous example. The only extended feature is content-based 
subscription.

Attention: Don’t confuse JMS built-in message filtering, which is performed 
by the JMS API on the application side, with MQSeries Integrator 
content-based subscriptions, which are evaluated on the broker side (that is, 
before sending the messages to the target applications), thus optimizing the 
usage of network resources.
 Chapter 7. Advanced Web enablement 183



In this application, the user is prompted for input in two levels. The first level for 
topic selection was discussed in examples in 7.4, “Program flow of the 
application” on page 178, and the second level is for query setting. The user can 
specify start time, end time, and stop number, which can have a combination of 
message types within the available choices (Position/Accident/Breakdown). 

In the following sections we discuss:

� Servlet configuration
� AMI repository configuration
� Program invocation
� Discussion about the application

7.5.3  Servlet configuration
Refer to 6.1.2, “Servlet configuration” on page 155 for servlet configuration 
information. Create a servlet entry ForecastAdvServlet in the itso Web 
application. Configure the init parameter of the servlets as described in 
Table 7-1.

Table 7-1   ForecastAdvServlet Init Param list

The param list contains the same entries discussed in Chapter 6, “Web 
enablement” on page 149 and two extra entries, control_queue and 
sub_receiver, which hold the sender service and receiver service names of the 
subscriber respectively.

Init Param Name Init Param Value

hostfilename amthost.xml

repositoryname amt.xml

sessionname VEHICLE.WEB.ADV.SESSION

policyname VEHICLE.SUB.POLICY

subscribername VEHICLE.WEB.ADV.SUBSCRIB
ER

messagereceiver VEHICLE.WEB.ADV.RECEIVER
.MSG

messagesubscriber VEHICLE.WEB.ADV.SUBSCRIB
ER.MSG

waittime 2000

control_queue BROKER.2.CONTROL.QUEUE

sub_receiver VEHICLE.2.RECEIVER
184 MQSeries Publish/Subscribe Applications



7.5.4  AMI repository configuration
The content-based subscription is supported only in MQSeries Integrator broker 
and the message is in the MQSI V2 format or in the RFH2 format. So we define a 
new service point as BROKER.2.CONTROL.QUEUE for the 
SYSTEM.BROKER.CONTROL.QUEUE, in which Service Type is either 
MQSeries Integrator V2 or RF Header V2. Then we create a new subscriber 
point entry VEHICLE.WEB.ADV.SUBSCRIBER in the repository and assign 
BROKER.2.CONTROL.QUEUE as the sender service and 
VEHICLE.2.RECEIVER as the receiver service. There is no need to define a new 
policy for this application. We use the old policy VEHICLE.SUB.POLICY, which 
was used for the simple Web subscriber application discussed in Chapter 6, 
“Web enablement” on page 149.

7.5.5  Program invocation
We copy the ForeceastAdv.html file into the Web folder of the Web application 
itso and type the following URL in the browser:

http://hostname/itso/ForecastAdv.html

where hostname is the name of the machine on which the WebSphere Application 
Server is running. We get a window like the one shown in Figure 7-9 on 
page 186.
 Chapter 7. Advanced Web enablement 185



Figure 7-9   Content-based forecast message input window 

The default value for Start Time is '00:00:00' and for End Time is '23:59:00'. This 
is the maximum time limit that can be specified. By default the all the message 
types are checked and the stop number is blank. We accept the defaults and 
click the Subscribe button to see the output shown in Figure 7-10 on page 187.
186 MQSeries Publish/Subscribe Applications



Figure 7-10   Content-based forecast message subscription 

The presentation logic is the same as discussed in the previous JMS-based Web 
subscriber example. 

We can either re-subscribe with the old topic and filter condition by clicking the 
Refresh button, or we can go back to the previous Input window shown in 
Figure 7-9 on page 186 to subscribe to a new topic and filter condition.

Note: For content-based subscriptions, the publication message has to be in 
the RFH2 message format. Please refer to “The Forecast application” on 
page 216 for more details.
 Chapter 7. Advanced Web enablement 187



7.5.6  Discussion of the application
This application has the same program flow as discussed in previous JMS-based 
subscriber applications.The following are the important steps involved in this 
application:

1. Applying a filter condition for content-based subscription.

Since the evaluation of filters by the broker slows down the time spent by the 
broker on each message (for example, depending on the filter complexity it 
may double it), we ignore content-based subscription for the following 
conditions and subscribe as per the topic selection:

– If the default values are selected for StartTime,EndTime, MessageType

– If Start Time and End Time is blank 

– If all the Message Type are checked

Otherwise we construct the query string and add a filter to the subscribe 
message. The query string contains the equivalent ESQL statement. which is 
similar to SQL.

2. If we set Start Time=01:12:00, End Time=05:23:00 and we checked the 
message type for 'Position' and 'Breakdown', the query string would be as 
follows:

(Root.XML.VehicleForecast.Position.timestamp>= '01:12:00' and 
Root.XML.VehicleForecast.Position.timestamp <='05:23:00' ) and 
(Root.XML.VehicleForecast.Status='position' or 
Root.XML.VehicleForecast.Status='breakdown' )

If the query string is formed, we add that to the subscribe message just before 
subscribing to the selected topic.

subscribeMsg.reset();
subscribeMsg.addFilter(queryString);

Otherwise we just subscribe to the topic without adding any filter.

7.5.7  Subscribe on request
In this part we discuss the issue that was raised in 7.4.2, “Comments and 
extensions” on page 181, where the JMS-based subscriber application receives 
more than one message if it subscribes during the course of message 
publication. We address this issue in this AMI-based solution by following the 
steps as discussed below.

1. In order to populate the AMI message header for features like Publish On 
Request, Request Updation and Use Correl Id as ID, we make use of 
lower-level AMI calls addAmElement(amElement). We define the following 
AmElement in subscriber application bean:
188 MQSeries Publish/Subscribe Applications



AmElement pubOnRequestOnly = new 
AmElement(AmConstants.AMPS_REGISTRATION_OPTIONS,AmConstants.AMPS_PUB_ON_REQ
UEST_ONLY);
AmElement requestUpdate = new 
AmElement(AmConstants.AMPS_COMMAND,AmConstants.AMPS_REQUEST_UPDATE);
AmElement correlIdasId= new 
AmElement(AmConstants.AMPS_REGISTRATION_OPTIONS,AmConstants.AMPS_CORREL_ID_
AS_ID);
AmElement subQueue=null;

2. We create a sender session and a receiver session with Subscriber Sender 
Service name and Receiver Service name. Then we retrieve the Receiver 
Service queue name and we create an AmElement.

amSender = subscriberSession.createSender(subinit.getControl_queue());
amReceiver = subscriberSession.createReceiver(subinit.getSub_queue());
String q = amReceiver.getQueueName();
subQueue = new AmElement(AmConstants.AMPS_Q_NAME, q);

3. During subscription, we do the following steps:

a. Reset the subscribe message:

subscribeMsg.reset();

b. If the request is for content-based subscription, then we add the supplied 
query string as a filter:

subscribeMsg.addFilter(queryString);

c. We subscribe on request only. We add the correlIdasId and 
pubOnRequestOnly AmElement to the Subscribe Message header.

topicElement = new AmElement(AmConstants.AMPS_TOPIC,topicName);
subscribeMsg.addTopic(topicName);
subscribeMsg.addElement(correlIdasId);
subscribeMsg.addElement(pubOnRequestOnly);
correlId=generateCorrelId();
  if (correlId != null )
  {
     subscribeMsg.setCorrelationId(this.correlId.getBytes());
  }
 subscriber.subscribe(subscribeMsg, policy);

d. Immediately after subscription, we reset the subscribe message once 
again and add requestUpdate Element and set the Subscriber Queue 
name to the Subscribe Message header. Then we send the Subscribe 
Message to the broker by the amSender service. By this approach we 
request the broker to publish the updated message to the subscriber 
queue (which is set in the MessageHeader) thereby ensuring that only the 
updated message is received for a given topic in the subscriber queue.

subscribeMsg.reset();
 Chapter 7. Advanced Web enablement 189



subscribeMsg.addElement(requestUpdate);
subscribeMsg.addTopic(topicName);

3. If the request is for content-based subscription, then we add the following 
lines in which we add the query string as a filter:

subscribeMsg.addFilter(queryString);
subscribeMsg.addElement(correlIdasId);
subscribeMsg.setCorrelationId(this.correlId.getBytes());
subscribeMsg.addElement(subQueue);
amSender.send(subscribeMsg);

4. Finally we receive the output as shown in Figure 7-8 on page 181.

This Web-based subscriber application in AMI has demonstrated the power of 
content-based subscription as well as receiving updated messages for a given 
topic.

7.6  Example - a three-tier implementation
All the example application usage cases discussed so far used just one broker 
for simplicity. This is not a limitation. For example, we were able to easily set up a 
test environment with three interconnected brokers (see Figure 7-11).

Figure 7-11   A three tier broker network 

� Broker MI11BK runs the publisher application; in a real-world scenario this 
might have been the field broker serving a multitude of publishing mobile 
devices embedded in vehicles.
190 MQSeries Publish/Subscribe Applications



� Broker MI12BK runs the Forecast application; in a real-world scenario this 
might have been the back office broker enforcing corporate message 
transformation and routing rules.

� Broker MI13BK runs the subscriber application; in a real-world scenario this 
might have been the front office broker serving requests coming from users 
using different client technologies (for example, legacy cobol applications, 
Web browser or messaging enabled pervasive devices).

To implement this scenario we followed these steps (we do not go into the details 
of each step, because they are already covered in the book):

1. We created four queue managers (one for the Configuration Manager and the 
User Name Server plus one for each broker).

2. We defined the Configuration Manager queue manager as the full repository 
of a MQSeries queue manager cluster to which all the other queue managers 
were subsequently joined.

3. We defined the relevant MQSeries Integrator components: Configuration 
Manager, User Name Server and brokers.

4. We defined the broker topology shown in Figure 7-11 on page 190.

5. We deployed the Default Publish/Subscribe message flow to broker MI11BK 
and MI12BK (MI13BK does not need one because it only hosts subscribers).

6. We ran the example application as usual.

7.7  Final content-based subscriptions considerations
Content-based subscriptions are a very powerful feature. In the following 
sections we review the main things to consider before implementing a subscriber 
application based upon them.

7.7.1  Applicability
If you compare the simple AMI Web subscriber discussed in 7.5, “AMI Web 
application and message filtering” on page 182 with the AMI Web subscriber we 
just described, you notice how little the code of the two program varies (we 
basically add a dynamically built ESQL filter expression to our existing 
subscription request) and how big is the difference in terms of functionality.

Generally the adoption of content-based subscriptions provides for streamlined 
applications and sometimes avoids the use of databases used only to locally 
filter transient data.
 Chapter 7. Advanced Web enablement 191



Many publish/subscribe applications can then benefit from content-based 
subscriptions.

7.7.2  Content-based subscription simulation
Content-based subscriptions are a unique feature of MQSeries Integrator and 
are not supported by MQSeries Publish/Subscribe.

In some special cases you can simulate a content-based subscription with a 
topic-based one simply designing to topic three in order to include the value on 
which to filter.

For example suppose that you are publishing weather forecasts on topic 
Weather/Tomorrow/City, and you want to receive the data of only the sunny 
cities.

One way of doing this is to subscribe to Weather/Tomorrow/# with filter 
Forecast=’sunny’; another way of obtaining the same result using only an 
extended topic hierarchy is to subscribe to Weather/Tomorrow/#/sunny.

In general complex filter expressions (for example, involving the logical operator 
NOT) operating on fields having non-discrete values (for example, the US Dollar 
versus English Pound exchange rate) cannot be simulated just with an ad hoc 
designed topic hierarchy.

7.7.3  Performance implications
The adoption of content-based subscriptions can have mixed impacts on the 
overall system performance:

� The evaluation of filter by the broker slows down the time spent by the broker 
on each message (for example, depending on the filter complexity it may 
double).

� The subscriber application throughput and the network load can significantly 
benefit from the reduced number of messages that are forwarded by the 
broker.

So there is no golden rule. It very much depends on network speed, filter 
complexity, and filter selectivity.
192 MQSeries Publish/Subscribe Applications



Chapter 8. Conclusions

This brief chapter will quickly review publish/subscribe applications.

8

© Copyright IBM Corp. 2001 193



8.1  The technology
This redbook contains many different examples of publish/subscribe technology 
applications. it should now be apparent how its applicability spans domains and 
is by no means confined to niche applications dealing with stock trading.

Here are some emerging areas of applicability for the publish/subscribe 
paradigm.

8.1.1  Web-based applications
We have discussed this type of application thoroughly in the book. Typically the 
content will be retained by the broker and the subscriptions will be very short 
lived. 

Moreover Web portal technologies can leverage publish/subscribe features in 
order to attain a higher level of content personalization for the Web users.

8.1.2  Pervasive applications
Complex applications residing on mobile devices can benefit from a 
publish/subscribe broker to significantly reduce the complexity of message 
routing and messaging administration. In such an environment, content- based 
subscription can be used to further filter the amount of data to be received.

8.1.3  Enterprise Application Integration
Heterogeneous application environments in large enterprises can exploit the 
services of a publish/subscribe broker in order to dynamically accommodate 
everchanging business requirements, without the intervention of the application 
codes.

In such environments, typically subscriptions will never expire and the 
exchanged messages will be persistent. Maybe these are the environments 
where the benefits of having a publish/subscribe broker running over a proven 
and robust messaging provider such as MQSeries are most evident.

One of the key features of an enterprise-wide publish/subscribe backbone is to 
have fine-grained control over the corporate topic hierarchy. MQSeries Integrator 
offers such a feature.
194 MQSeries Publish/Subscribe Applications



8.2  IBM offerings
These are IBM’s current offerings in the publish/subscribe arena.

8.2.1  MQSeries Publish/Subscribe
MQSeries Publish/Subscribe is a product extension that can be downloaded free 
of charge from the IBM Web site. It enables customers to build a topic-based 
publish/subscribe infrastructure. Publisher and subscriber applications can run 
on any of the more than 35 MQSeries supported platforms, while the broker can 
currently run only on the AIX, HP-UX, Solaris, Linux, Windows NT and Windows 
2000 platforms.

MQSeries Publish/Subscribe brokers support queue-level security and parallel 
computation, and can be interconnected in hierarchies.

8.2.2  MQSeries Integrator
MQSeries Integrator is a full-fledged message broker. Its publish/subscribe 
capabilities can be freely combined with other powerful features, such as 
message transformation, content-based routing, context-based routing, and 
database integration.

Topic-based as well as content-based subscriptions are available.

The security model implemented by MQSeries Integrator is both queue-based 
and topic-based, so the administrator can create an ACL for each restricted 
topic.

The MQSeries Integrator publish/subscribe implementation is highly scalable. 
You can combine multiple brokers in tightly coupled subnetworks (collectives) in 
order to obtain maximum performance.

MQSeries Integrator brokers and collectives can be combined with MQSeries 
Publish/Subscribe brokers in mixed broker networks.

8.2.3  More Information
For more information and all the latest developments in IBM’s messaging and 
Publish/Subscribe products, please go to:

http://www-4.ibm.com/software/ts/mqseries/
 Chapter 8. Conclusions 195

http://www-4.ibm.com/software/ts/mqseries/


196 MQSeries Publish/Subscribe Applications



Appendix A. Hardware and software 
environment

During the writing of this redbook, we used five Intel machines to develop and 
test the sample publish/subscribe applications discussed in this book.

The following sections contain a detailed account of the hardware and software 
we used.

A

© Copyright IBM Corp. 2001 197



Hardware
The PCs we used were:

� IBM PC - Model 6579 

� Intel Pentium III running at 864 MHz 

� 522 MB of real memory and 768 MB of virtual memory.

� 22 GB hard disk

All the machines were on a Windows 2000 domain, and were connected together 
by a TCP/IP token-ring network.

Software
The operating system and other software on the machines was:

� Microsoft Windows 2000 Professional V5.0 2195 Build 2195

� IBM MQSeries for Windows 2000 V5.2 

� IBM MQSeries Integrator for Windows 2000 v2.0.2

� IBM DB2 V7.2

� IBM WebSphere Application Server V3.5.4 

� IBM HTTP Server V1.3.12.3 Support 

� Netscape Communicator V4.77

� MS Visual C++ Standard Edition V6.0

� IBM VisualAge for Java for Windows V3.5.3

� IBM Developer Kit Java (JDK) V1.2.2

� IBM MQSeries Classes for Java and Java Message Service (MA88)

� IBM MQSeries Publish/Subscribe (MA0C)

� IBM MQSeries Application Messaging Interface (MA0F) V1.11 
198 MQSeries Publish/Subscribe Applications



Appendix B. MQSeries Publish/Subscribe 
administration commands

This appendix is a brief overview of the main MQSeries Publish/Subscribe 
administration commands, please refer to MQSeries Publish/Subscribe User’s 
Guide, GC34-5269 for more detailed information.

B

Note: The user ID invoking these MQSeries Publish/Subscribe commands 
needs to be a MQSeries administrator.
© Copyright IBM Corp. 2001 199



strmqbrk
The strmqbrk command is used to start a broker. The first time this command is 
run on a queue manager, all the relevant MQSeries objects are automatically 
created. 

strmqbrk -m MYQMGRNAME
strmqbrk -p MYPARENTQMGRNAME -m MYQMGRNAME

You can use the -p option to specify the name of the parent queue manager in a 
broker network, once you specified such value it is retained by the broker upon 
restart.

dspmqbrk
The dspmqbrk command is used to check the status of the broker. Possible states 
are: starting, running, stopping, quiescing, not active and ended abnormally.

dspmqbrk -m MYQMGRNAME

endmqbrk
The endmqbrk command is used to stop a broker. There are two options: -c 
requests a controlled shutdown (default), -i requests an immediate shutdown.

endmqbrk -i -m MYQMGRNAME 

.

200 MQSeries Publish/Subscribe Applications



Appendix C. MQSeries Integrator 
administration commands

This appendix is a brief overview of the main MQSeries Integrator administration 
commands. Please refer to MQSeries Integrator Administration Guide, 
SC34-5792 for more detailed information.

The most commonly used commands on Windows 2000 or NT are also available 
by clicking Start -> Programs -> IBM MQSeries Integrator 2.0 -> Command 
Assistant.

Please note that:

� The MQSeries Integrator command assistant does not provide support for 
starting and stopping the MQSeries Integrator components. You must issue 
the MQSeries Integrator administration commands mqsistart and mqsistop 
from the command line. 

� The user ID invoking MQSeries Integrator commands must be part of relevant 
MQSeries Integrator groups.
© Copyright IBM Corp. 2001 201



MQSeries Integrator pub/sub admin commands
Here is a comprehensive list of the available MQSeries Integrator commands. 
We provide examples only for those dealing with the integration with MQSeries 
Publish/Subscribe brokers.

� Generic start/stop command for the MQSeries Integrator components 
(brokers, configuration manager and user name server):

– mqsistart

– mqsistop

� List and trace commands:

– mqsilist

– mqsiformatlog

– mqsisilcc

– mqsireporttrace

– mqsireadlog

� MQSeries Integrator component creation commands:

– mqsicreateconfigmgr

– mqsicreatebroker

– mqsicreateusernameserver

� MQSeries Integrator component deletion commands:

– mqsideleteconfigmgr

– mqsideletebroker

– mqsideleteusernameserver

� MQSeries Integrator commands used to interface MQSeries 
Publish/Subscribe brokers:

– mqsilistmqpubsub

– mqsijoinmqpubsub

– mqsiclearmqpubsub

Admin commands for mixed brokers
Here are some examples of MQSeries Integrator commands that are used when 
dealing with mixed broker networks, which are networks made of MQSeries 
Integrator brokers and MQSeries Publish/Subscribe brokers.
202 MQSeries Publish/Subscribe Applications



mqsilistmqpubsub
The command mqsilistmqpubsub is used to display the status and supported 
streams of the MQSeries Publish/Subscribe neighbor brokers of the specified 
MQSeries Integrator Broker. 

mqsilistmqpubsub MYBROKERNAME

mqsijoinmqpubsub
The command mqsijoinmqpubsub is used to join the specified MQSeries 
Integrator broker as a child to an MQSeries Publish/Subscribe broker. 

mqsijoinmqpubsub MYBROKERNAME -p MYPARENTQUEUEMANAGERNAME

The -p option identifies the MQSeries Publish/Subscribe broker that will be the 
parent of the MQSeries Integrator broker. 

The successful completion of this command only indicates that the MQSeries 
Integrator broker has accepted the request, not that the required action has 
completed. 

mqsiclearmqpubsub
The command mqsiclearmqpubsub is used to remove an MQSeries 
Publish/Subscribe broker as a neighbor of an MQSeries Integrator broker.

mqsiclearmqpubsub MYBROKERNAME -n NEIGHBORQUEUEMANAGERNAME

To complete this action, you must also issue the MQSeries Publish/Subscribe 
command clrmqbrk against the MQSeries Publish/Subscribe broker. 

When both clear commands have completed, all publish and subscribe traffic 
between the two brokers ceases.
 Appendix C. MQSeries Integrator administration commands 203



204 MQSeries Publish/Subscribe Applications



Appendix D. The GUI-based subscriber 
application

The GUI subscriber application is a stand-alone Java program using AMI for 
subscription hardware.

D

© Copyright IBM Corp. 2001 205



AMI configuration
Copy the amt.xml and amthost.xml files from the AMIRepository directory to the 
amt subdirectory located in the MQ installation directory (for example, C\Program 
Files\IBM\MQSeries\amt or C\Program Files\MQSeries\amt). If another amt.xml 
or amthost.xml file is already present in this directory, you may want to rename 
the previous version of these files first.

Edit amthost.xml to adapt the defaultConnection attribute of the queue 
manager’s element to the name of your queue manager.

Run the vehicle.mqsc script on your queue manager to create three queues 
(named VEHICLE.xxx) and a server connection channel.

Subscriber configuration
Edit the two entries SUBLIB and MQ of the subgui.bat batch file in the subgui 
directory:

� Set the SUBLIB value to the complete name of the directory where you 
copied this application, that is the directory containing the 
subscribe.properties file.

� Set the MQ value to the MQ installation directory.

� Start the GUI-based subscriber application by double-clicking the subgui.bat 
file. 

Simple Web subscriber application
The simple Web subscriber application will be ported to the WebSphere 
Application Server. It uses Java AMI program for subscription.

AMI configuration
Check that the default model queue SYSTEM.DEFAULT.MODEL.QUEUE is 
defined.

Servlet configuration
The servlet configuration has been discussed in detail in 6.1.2, “Servlet 
configuration” on page 155, so please follow those steps.
206 MQSeries Publish/Subscribe Applications



Additional WebSphere Application Server configuration 
The following JAR files are required to execute the sample Web application.

� com.ibm.mq.amt.jar

� xerces.jar

We can either add these JAR file paths to the application server classpath or to 
the classpath of the Web application named itso:

1. Add to application server classpath

– Open the admin.config file of the WebSphere Application Server from 
WebSphere installation path\appserver\bin. Edit the entry 
com.ibm.ejs.sm.adminserver.classpath and add the path of the AMI JAR 
file that is located at MQInstallpath\java\lib\. For example, 
c:\MQSeries\java\lib\com.ibm.mq.amt.jar. 

– Also add the path of the xerces.jar file where you have unzipped the file. 
For examle, c:\websub.

com.ibm.ejs.sm.adminserver.classpath=c\:/MqSeries/java/lib/com.ibm.mq.am
t.jar;c\:/MQSeries/java/lib;c\:/websub/xerces.jar;

– Restart the application server.

2. Add to Web application (itso) classpath

– Add the path of the AMI JAR file, which is located at 
MQInstallpath\java\lib\. For example, 
c:\MQSeries\java\lib\com.ibm.mq.amt.jar. 

– Add the path of the xerces.jar file.

– Restart the Web application.

– Type the following URL:

http://hostname/itso/start.html 

to start the application, where hostname is the name of the machine on 
which WebSphere Application Server is running.

Web subscriber Forecast application
The Web subscriber Forecast application will be ported to the WebSphere 
Application Server. It uses JMS for subscriptions.

JMS configuration
Follow the steps as discussed in “JMS configuration” on page 214.
 Appendix D. The GUI-based subscriber application 207



MQSeries Integrator configuration
Start Broker ConfigMgr from Windows Services. Import the 
JMSForecastPubSubMsgFlow.xml file, which is provided in the MQSeries 
Integrator directory. Start the MQSeries Integrator broker from Windows Services 
and deploy the broker.

Servlet configuration
The servlet configuration has been discussed extensively in 6.1.2, “Servlet 
configuration” on page 155. Follow the steps discussed there and create a 
servlet entry as  ForecastServlet  and servlet class name as 
com.ibm.itso.swa111.subscribe.web.ForecastServlet under the Web application 
itso folder. Enter the init parameter entries as discussed in 7.3.1, “Servlet 
configuration” on page 175. The value of the init parameters can be obtained 
from the pub.properties file.

Additional WebSphere Application Server configuration
Follow either of the steps as discussed in “Additional WebSphere Application 
Server configuration” on page 207 and add the following JAR files:

� com.ibm.mq.jar

� com.ibm.mq.iiop.jar

� com.ibm.mqbind.jar

� com.ibm.mqjms.jar

� xerces.jar

Type the following URL:

http://hostname/itso/PTInput.html

where hostname is the name of the machine on which WebSphere Application 
Server is running.

Advanced Web subscriber Forecast  application
This advanced Web subscriber Forecast application demonstrates 
content-based subscription. It uses Java AMI for subscription.

AMI configuration
Check that the default model queue SYSTEM.DEFAULT.MODEL.QUEUE is 
defined.
208 MQSeries Publish/Subscribe Applications



Servlet configuration
The servlet configuration has been discussed extensively in 6.1.2, “Servlet 
configuration” on page 155. Follow the steps discussed there and create a 
servlet entry as  ForecastAdvServlet  and servlet class name as 
com.ibm.itso.swa111.subscribe.web.ForecastAdvServlet under the Web app itso 
folder. Enter the init parameter entries found in 7.3.1, “Servlet configuration” on 
page 175.

Additional WebSphere Application Server configuration
Follow the steps discussed in “Additional WebSphere Application Server 
configuration” on page 207 and add the  following JAR files:

� com.ibm.mq.amt.jar

� xerces.jar

Type the following URL:

http://hostname/itso/ForecastAdv.html

where hostname is the name of the machine on which WebSphere Application 
Server is running.
 Appendix D. The GUI-based subscriber application 209



210 MQSeries Publish/Subscribe Applications



Appendix E. Additional material

This redbook refers to additional material that can be downloaded from the 
Internet as described below. 

E

© Copyright IBM Corp. 2001 211



Locating the Web material
The Web material associated with this redbook is available in softcopy on the 
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246282

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with 
the redbook form number, SG246282.

Using the Web material
The additional Web material that accompanies this redbook includes the 
following file:

File name Description
sg246282.zip Zipped code

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows
Processor: 500 MHz or higher
Memory: 256 MB, preferably 512 MB

How to use the Web material
In this chapter we will describe what you need to do in order to make the different 
application components run.

Create a directory on your workstation, and unzip the contents of the Web 
material zip file into this folder.

Preliminaries
It is assumed that:

� MQSeries Version 5.2 is installed, a queue manager has been created and is 
currently running. We refer to this queue manager as ITSO but the name has 
no importance.
212 MQSeries Publish/Subscribe Applications

ftp://www.redbooks.ibm.com/redbooks/SG246282
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/


� The SupportPacs MA88 and MA0F are installed.

� WebSphere is installed and running (this is only needed for JMS).

� A JDK or JRE is installed on your machine. To check if a JDK or JRE is 
installed, you can run the command java -fullversion. If you receive an 
error message because the command is unknown, then your computer is not 
aware of any JDK installed. 

In that case, you can use the JDK installed with WebSphere Application 
Server by editing the PATH environment variable of your computer and add 
the following entry: 

C:\WebSphere\AppServer\jdk\bin; 

where C:\WebSphere\AppServer is the installation directory of WebSphere 
Application Server. 

If you are not using WebSphere Application Server and no JDK or JRE is 
installed, you can also download and install any other JDK.

� Either MQSeries Integrator or MQSeries Pub/Sub (SupportPac MA0C) must 
be installed.

– if MQSI is chosen, you must:

• Create the queue SYSTEM.BROKER.DEFAULT.STREAM with the MQ 
script default_stream.mqsc provided in the MQSC directory.

• Import the example message flows provided with MQSeries Integrator 
(from C:\mqsi20\examples\SamplesWorkspaceForImport, where 
C:\mqsi20 is the installation directory of MQSeries Integrator) and 
deploy the default publish/subscribe message flow on the queue 
manager.

– if MQSeries Publish/Subscribe is chosen, the MQSeries Pub/Sub 
SupportPac (MA0C) must be installed and the broker must be started with 
the strmqbrk command.

The publisher application
The publisher application is a Java program using either AMI (C or Java), JMS or 
C MQI for publishing messages. All the other components of the application 
require the publisher.

AMI configuration
1. Copy the amt.xml and amthost.xml files from the AMI Repository directory to 

the amt subdirectory located in the MQ installation directory (for example, 
C\Program Files\IBM\MQSeries\amt or C\Program Files\MQSeries\amt). If 
another amt.xml or amthost.xml file is already present in this directory, you 
may want to rename the previous version of these files first.
 Appendix E. Additional material 213



2. Edit amthost.xml to adapt the defaultConnection attribute of the 
queuemanagers element to the name of your queue manager.

3. Run the vehicle.mqsc script on your queue manager to create three queues 
(named VEHICLE.xxx), and a server connection channel.

JMS configuration
1. Start the JNDI server (WebSphere Application Server Admin Server, 

VisualAge Persistent Name Server, LDAP Server, etc.).

2. Copy the JMSAdmin.scp script provided in the pub directory to the \java\bin 
subdirectory located in the MQSeries installation directory (for example, 
C:\Program Files\MQSeries\Java\bin).

3. Edit the script JMSAdmin.scp provided in the pub directory to replace the 
QMANAGER and BROKERQMGR parameter values with your queue 
manager name, the HOST parameter value with your host name, the PORT 
value with the port on which the queue manager listens (for example, 1414) in 
the two def tcf commands.

4. Edit the JMSAdmin.config file in the same directory to specify the necessary 
parameters in order to reach your JNDI server.

If you are using WebSphere Admin Server on your local machine, the 
parameters are:

INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
PROVIDER_URL=iiop://localhost/

5. You should now run the command JMSAdmin.bat < JMSAdmin.scp > 
JMSAdmin.out from the same to define the objects contained in the 
JMSAdmin.scp script. 

To avoid any problems of path or classpath when running JMSAdmin.bat, we 
provide a JMSAdmin2.bat file that you could of easier use. 

Copy JMSAdmin2.bat into the same directory as JMSAdmin.bat.

Edit the SET MQ entry in this batch file to point to the installation directory of 
MQSeries.

Open a command prompt, change the current directory to the directory 
containing the JMSAdmin2.bat file and run the command: JMSAdmin2.bat < 
JMSAdmin.scp > JMSAdmin.out

Check the JMSAdmin.out file to see if the script was correctly executed.

The following output indicates a successful completion:

5648-C60 (c) Copyright IBM Corp. 1999. All Rights Reserved.
Starting MQSeries classes for Java(tm) Message Service Administration

InitCtx> Context not found, or unremovable
214 MQSeries Publish/Subscribe Applications



InitCtx> 
InitCtx> 
InitCtx/jms> Binding non-administerable or not found

InitCtx/jms> Binding non-administerable or not found

InitCtx/jms> Binding non-administerable or not found

InitCtx/jms> Binding non-administerable or not found

InitCtx/jms> 
InitCtx/jms> 
InitCtx/jms> 
InitCtx/jms> 
InitCtx/jms> 
Stopping MQSeries classes for Java(tm) Message Service Administration

C configuration
Copy the two executable files from the c directory to a directory contained in the 
PATH environment variable, for example, in the WINNT directory.

To use the C MQI method for publishing messages, set your queue manager as 
the default queue manager or create the environment variable VEHICLE_QMGR and 
set it to the name of your queue manager.

Publisher configuration
Edit the two entries PUBLIB and MQ of the pub.bat batch file in the pub directory:

1. Set the PUBLIB value to the complete name of the directory where you copied 
this application, that is the directory containing the pub.properties file.

2. Set the MQ value to the MQ installation directory

3. If you want to use JMS with WebSphere, set the WSJVALIB value to the 
directory containing the WebSphere JAR files, it equals to the WebSphere 
Application Server installation directory followed by \lib, for example 
C:\WebSphere\AppServer\lib.

4. You should check the content of the properties file pub.properties to see if the 
definitions correspond to your configuration (especially the JMS definition for 
contacting the JNDI server), to choose the desired publishing method (C AMI, 
C MQI, Java AMI, JMS) or to change the information published. The 
properties contained in the pub properties file are extensively described in the 
redbook.
 Appendix E. Additional material 215



If the queue manager is on the same machine as where the pub.bat batch file 
is run, and if you are using JMS, you can use JMS in binding mode by 
changing the jndiTopicConnectionFactory property in pub.properties from 
jms/ITSOPS to jms/ITSOPSBND.

5. Start the publisher application by double-clicking the pub.bat file.

6. The program stops automatically when all the messages for all the vehicles 
have been published.

The Forecast application
This standalone application is only using AMI and Java. It subscribes to the 
publications sent by the publisher application, waits for receiving the publications 
and publishes forecast messages.

AMI configuration
The required steps have been done when configuring the publisher application.

Forecast configuration
1. Check that the default model queue SYSTEM.DEFAULT.MODEL.QUEUE is defined.

2. Go in the forecast directory and edit the two entries FORECASTLIB and MQ in the 
forecast.bat batch file:

– Set the FORECASTLIB value to the complete name of the forecast directory 
(indicate the full path of the directory containing the forecast.properties 
file).

– Set MQ value to the MQ installation directory.

3. Check the properties file forecast.properties and decide if you want to run the 
application in single or multi-threaded mode (nbrThreads property).

4. Start the forecast application by double-clicking the forecast.bat file.

5. To end the program, type end on the command line and press Enter.

Measure for content-based subscription
For content-based subscription, we need to do the following changes in the 
forescast.properties and pub.properties file.

1. Update the following entry in the forecast.properties file:

publisherForecast=VEHICLE.FORECAST.PUBLISHER to 
publisherForecast=VEHICLE.FORECAST.2.PUBLISHER

2. Update the following entries in the pub.properties file:

publisherAccident=VEHICLE.ALERT.PUBLISHER to 
publisherAccident=VEHICLE.ALERT.2.PUBLISHER
publisherBreakdown=VEHICLE.ALERT.PUBLISHER to 
publisherBreakdown=VEHICLE.ALERT.2.PUBLISHER
216 MQSeries Publish/Subscribe Applications



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 218.

� MQSeries Primer, a redpaper found at http://www.ibm.com/redbooks

� Business Integration Solutions with MQSeries Integrator, SG24-6154

� MQSeries Version 5.1 Administration and Programming Examples, 
SG24-5849

Other resources
These publications are also relevant as further information sources:

� Using Java, SC34-5456

� Application Messaging Interface, SC34-5604

� IBM MQSeries for Windows NT and Windows 2000 V5R2 Quick Beginnings, 
GC34-5389

� IBM MQSeries Integrator for Windows NT V2.01 Quick Beginnings, 
GC34-5389

� IBM MQSeries Publish/Subscribe User’s Guide, GC34-5269

� IBM MQSeries An Introduction to Messaging and Queueing, GC33-0805

� IBM MQSeries Application Programming Guide, SC33-0807

� IBM MQSeries System Administration, SC33-1873

� IBM MQSeries Planning Guide, GC33-1349

� IBM MQSeries Integrator Introduction and Planning, SC34-5599

� IBM MQSeries Integrator Using the Control Center, SC34-5602

� IBM MQSeries Integrator Administration Guide, SC34-5792

� IBM MQSeries Integrator Programming Guide, SC34-5603
© Copyright IBM Corp. 2001 217

http://www.ibm.com/redbooks/REDP0021


Referenced Web sites
These Web sites are also relevant as further information sources:

� MQSeries manuals

http://www-4.ibm.com/software/ts/mqseries/library/manuals/

� MQSeries downloads and SupportPacs

http://www-4.ibm.com/software/ts/mqseries/downloads/

� MQSeries APARs and Fix packages

http://www-4.ibm.com/software/ts/mqseries/support/fixes/

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order 
hardcopy from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) 
from this Redbooks site. 

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and 
sometimes just a few chapters will be published this way. The intent is to get the 
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the 
Redbooks Web site for information about all the CD-ROMs offered, as well as 
updates and formats. 
218 MQSeries Publish/Subscribe Applications218 MQSeries Publish/Subscribe Applications

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www-4.ibm.com/software/ts/mqseries/library/manuals/
http://www-4.ibm.com/software/ts/mqseries/downloads/
http://www-4.ibm.com/software/ts/mqseries/support/fixes/


Special notices

References in this publication to IBM products, programs or services do not imply 
that IBM intends to make these available in all countries in which IBM operates. 
Any reference to an IBM product, program, or service is not intended to state or 
imply that only IBM's product, program, or service may be used. Any functionally 
equivalent program that does not infringe any of IBM's intellectual property rights 
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment 
specified, and is limited in application to those specific hardware and software 
products and levels.

IBM may have patents or pending patent applications covering subject matter in 
this document. The furnishing of this document does not give you any license to 
these patents. You can send license inquiries, in writing, to the IBM Director of 
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose 
of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact IBM Corporation, Dept. 
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal 
IBM test and is distributed AS IS. The use of this information or the 
implementation of any of these techniques is a customer responsibility and 
depends on the customer's ability to evaluate and integrate them into the 
customer's operational environment. While each item may have been reviewed 
by IBM for accuracy in a specific situation, there is no guarantee that the same or 
similar results will be obtained elsewhere. Customers attempting to adapt these 
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of these 
Web sites.
© Copyright IBM Corp. 2001 219



The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. 
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, 
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems 
Inc., an IBM company,  in the United States, other countries, or both.  In 
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other 
countries.

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States and/or other 
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States 
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel 
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed 
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks 
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service 
marks of others
220 MQSeries Publish/Subscribe Applications



acronyms
ACL Access Control List

AMI Application Messaging 
Interface

IBM International Business 
Machines Corporation

ITSO International Technical 
Support Organization

JMS Java Messaging Service

JNDI Java Naming Directory 
Interface

MQ MQSeries

MQI Message Queuing Interface

UNS User Name Server

XML Extensible Markup Language

Abbreviations and 
© Copyright IBM Corp. 2001
  221



222 MQSeries Publish/Subscribe Applications



Index

A
access   138
access control   112
acknowledgments   169
ACL   139
adapters   5
administration   44
administrator   14
alert   108, 144
AMI   12, 15, 28, 52, 56
AMI administration   94
AMI Tool   54
amt.lib   83
amtc.h   83
API   12
Application Messaging Interface   4, 8
attribute   86
audit   143
authorities   109

B
backup   35
bean   98, 161, 179
bitstream   88
blocking   101
bootstrap   44
broker   ix, 3, 5, 9, 12, 24, 84
broker control queue   13
business logic   74
business rules   167

C
C MQI   16
channels   113
child   110
classes   32
classpath   42
cluster   108
clustering   124
collective   9, 123, 138
commit   171
Compiling   88
© Copyright IBM Corp. 2001
component   126
compute   166
configuration   145
configure   29
connection   4, 38, 161
ConnectionFactory   38, 48
console   46
content   3, 7
content filtering   16
content-based subscriptions   5
context   46, 166
Control Center   119, 125
conventions   84
conversions   122
correlation identifier   53
CorrelId   95, 99, 100
coupling   110
Custom   34

D
database   5, 167
DB2   42, 54
debug   88
decoupling   110
default   48
default port   44
definitions   60
deploy   119
deregistration   150
deserialize   39
design   138
Destination   38
diagnostic   81
distributed   2
domain   126, 129
durable subscriptions   15
dynamic queue   7

E
environment   51, 99
ESQL   188
event   25
example   118
 223



exception   101
expiration date and time   7
Explorer   88
export   181

F
filter   26, 188
filtering   7, 26
flow   116
forecast   25, 169
functionality   121

G
gateways   5
General   69
generic   38, 110
global units of work   167
groups   126

H
handles   93
header   16, 121
hierarchy   9, 110, 113, 145
hostfile   99
HP   4
hub   110

I
IIOP   44
Implicit Stream Naming   133
import   116
inheritance   127
install   29
interbroker   112
interoperability   24
interpret   100
invocation   150
isomorphic   54

J
J2EE   36
JAR   35
Java   28, 88
Java Message Service   8
Java Native Interface   77
JDBC   32, 42
JDK   50

JMS   12, 14, 17, 28
JMSAdmin   39, 49, 50
JMSX   104
JNDI   17, 29, 38, 76
JRE   50

K
kernel   55

L
LDAP   54
leaves   112
Libraries   39
lifetime   163, 173
linking   88
logic   23, 172

M
MA0C   5, 29
MA0F   56
MA88   8, 32
Mapping   121
message   2
Message Queue Interface   4, 8
MessageConsumer   38
MessageProducer   38
method   53, 76, 101, 162
Microsoft Active Directory   54
migration   24, 115, 146
model queue   36
MQI   12, 15
MQInput   118
MQMD   15
MQPS   86
MQRFH   53, 54, 84, 85, 180
MQRFH1   16
MQRFH2   16, 54
mqsc   35
MQSeries   4
MQSeries Clustering feature   124
MQSeries Integrator   4
Multiple brokers   3
multithreaded   25

N
network   4, 5, 110, 129
node   123, 129, 134
224 MQSeries Publish/Subscribe Applications



nodes   5
non-durable   14
Non-persistent   6

O
object-oriented   53
objects   93, 99
offset   104
optimize   124
overhead   127
overview   22

P
parallel processing   121
parent   110, 145
parsing   84, 101
partition   109
pattern   55
payload   86, 104
performance   7
persistent   6
persistent messages   6
Persistent Name Server   39, 42
point-to-point   4, 47
policies   53, 60, 68, 99
policy definitions   54
policy handler   55
port   50
portability   91
principals   128
properties   74, 92, 98
PubJava   88
PubLauncher   28
publication node   14
publish   ix, 91
Publish/Subscribe   ix, 1
publisher   ix, 2, 12, 60
PubThread   28, 76

Q
queries   165
queue manager   5
quiesced   113

R
real-time   25
receiver   128

receiver service   65
recovery   130
Redbooks Web site   218

Contact us   xii
register   6, 14
registration   135
repository   54, 99
responses   15, 85
retained   20, 91, 105, 142
retained publications   6, 24
retained topic subtree   25
RFH2   101
Route   116
rules   5

S
sample   130
scope   9
SecureWay   54
security   129, 144
Security Account Manager   126
semantics   123, 167
serialize   39
service   53
service definitions   54
service point   14, 17, 54, 60
services   60
servlet   24, 150
session   38, 89, 93
simulator   130
SMTP   55
spokes   110
state   25
static   55
stream   87, 108, 109
stream queues   14
structured topic names   5
subscribe   ix, 3, 100
subscriber   2, 12, 60, 99
subscription   122, 134
subscription points   5
subtrees   113, 124
Sun   4
SupportPac   28, 29
syncpoint   7, 170

T
target   168
 Index 225



TCP/IP   48
temporary subscription   7
TextMessage   90
thread   28, 73
timing   83
topic   3, 7, 39, 47, 88, 89, 96
topology   110
trace   118
transform   5, 108
transient   20
translation   133
transmission queues   112

U
unsubscribe   3
upgrade   5
User Name Server   125
utility calls   82

V
Visual Basic   88
Visual Studio   80
VisualAge   29, 39

W
waitInterval   99
WebSphere   28
WebSphere Application Server   24
workloads   8
wrapper   77

X
XML   22, 54, 79, 87, 90, 94, 102
XML4J   94
226 MQSeries Publish/Subscribe Applications



(0.2”spine)
0.17”<->0.473”

90<->249 pages

M
QSeries Publish/Subscribe Applications







®

SG24-6282-00 ISBN 0738423149

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

MQSeries
Publish/Subscribe
Applications
Guidelines for 
designing a 
publish/subscribe 
environment

Developing and 
publishing with MQI, 
AMI, and JMS

Programming 
examples for an 
information push 
system

Publish and Subscribe is an effective way of disseminating 
information to multiple users. Publish/Subscribe applications 
can help you to enormously simplify the task of getting 
business messages and transactions to a wide, dynamic and 
potentially large audience in a timely manner.

This redbook positions the MQSeries Publish/Subscribe to 
MQSeries Integrator Publish/ Subscribe.

It will help you create, tailor and configure an application from 
publishing data through to subscribing via Web pages.

The books provides a broad understanding of how to build and 
run an entire publish/subscribe solution.

It will give you a quick start to designing and creating a 
solution and then migrating it from MQSeries 
Publish/Subscribe to MQSeries Integrator Publish/Subscribe.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Chapter 1. Introduction to publish/subscribe
	1.1 What is publish/subscribe?
	1.2 MQ products
	1.2.1 MQSeries
	1.2.2 MQSeries Integrator

	1.3 Features of MQ Publish/Subscribe systems
	1.3.1 Retained publications
	1.3.2 Message persistence
	1.3.3 Topic-based or content-based subscriptions
	1.3.4 Temporary subscriptions
	1.3.5 Expiration

	1.4 Languages and interfaces
	1.4.1 AMI
	1.4.2 JMS
	1.4.3 MQI

	1.5 Broker networks
	1.5.1 MQSeries Publish/Subscribe broker networks
	1.5.2 MQSeries Integrator and mixed broker networks


	Chapter 2. Technical overview
	2.1 Queues and message headers
	2.1.1 Queues
	2.1.2 Message formats


	Chapter 3. Example application
	3.1 The business case
	3.2 Application solution
	3.2.1 Simulated public transport system

	3.3 Publish/subscribe scenario 1
	3.4 Publish/subscribe scenario 2
	3.5 Publish/subscribe scenario 3
	3.6 Publish/subscribe scenario 4
	3.7 Publish/subscribe scenario 5

	Chapter 4. The publish/subscribe application
	4.1 Software components
	4.2 Environment setup
	4.2.1 MQSeries Publish/Subscribe installation
	4.2.2 JMS installation
	4.2.3 JMS overview
	4.2.4 JMS configuration, JNDI and JMSAdmin
	4.2.5 Defining MQSeries required for the application
	4.2.6 AMI overview
	4.2.7 AMI installation
	4.2.8 AMI configuration

	4.3 PubLauncher
	4.3.1 The properties file - pub.properties
	4.3.2 PubLauncher coding logic
	4.3.3 Starting the publication application

	4.4 PubThread
	4.4.1 PubThread coding logic

	4.5 The publication messages
	4.6 Publishing in C
	4.6.1 Vehicle C AMI program
	4.6.2 Vehicle C MQI program

	4.7 Publishing in Java
	4.7.1 Publishing in JMS
	4.7.2 Publishing in Java AMI

	4.8 Subscription
	4.8.1 Setup of the environment
	4.8.2 XMLParser setup
	4.8.3 VAJava setup

	4.9 AMI administration setup
	4.10 Sample subscriber application
	4.10.1 Control Program
	4.10.2 XML parser program
	4.10.3 GUI program
	4.10.4 Parsing JMS-based published message

	4.11 Comments and extensions
	4.11.1 Retained publications
	4.11.2 Streams
	4.11.3 Broker networks


	Chapter 5. Migration to MQSeries Integrator
	5.1 Step-by-step guide
	5.1.1 Step 1 - Creation of a publication queue
	5.1.2 Step 2 - Creation of a simple publish message flow
	5.1.3 Step 3 - Deployment to the target broker
	5.1.4 Step 4 - Executing example applications on MQSeries Integrator
	5.1.5 Step 5 - Trace analysis

	5.2 Comments and extensions
	5.2.1 Streams handling in MQSeries Integrator
	5.2.2 Subscription points
	5.2.3 MQSeries Integrator broker networks and collectives
	5.2.4 Topic-based security
	5.2.5 Example - migration of applications using streams
	5.2.6 Example - message translation using subscription points
	5.2.7 Example - MQSeries Integrator broker networks
	5.2.8 Example - confidential publish/subscribe environment

	5.3 Other forms of interoperability
	5.3.1 Mixed broker networks
	5.3.2 Migrating an MQSeries broker to MQSeries Integrator
	5.3.3 Example - mixed broker networks


	Chapter 6. Web enablement
	6.1 A simple Web-based subscriber
	6.1.1 WebSphere Application Server configuration
	6.1.2 Servlet configuration
	6.1.3 AMI repository configuration
	6.1.4 Program invocation
	6.1.5 Discussion about the Web part of the application

	6.2 Comments and extensions

	Chapter 7. Advanced Web enablement
	7.1 Concept
	7.1.1 A new middle tier component
	7.1.2 Architectural considerations

	7.2 Forecast application
	7.2.1 ForecastThread: single-threaded behavior
	7.2.2 ForecastThread: multithreading behavior
	7.2.3 The forecast message

	7.3 JMS Web subscriber application
	7.3.1 Servlet configuration
	7.3.2 Program invocation

	7.4 Program flow of the application
	7.4.1 Using MQSeries Integrator to tweak publication content
	7.4.2 Comments and extensions

	7.5 AMI Web application and message filtering
	7.5.1 Content-based subscriptions
	7.5.2 Content-based Web subscriber application
	7.5.3 Servlet configuration
	7.5.4 AMI repository configuration
	7.5.5 Program invocation
	7.5.6 Discussion of the application
	7.5.7 Subscribe on request

	7.6 Example - a three-tier implementation
	7.7 Final content-based subscriptions considerations
	7.7.1 Applicability
	7.7.2 Content-based subscription simulation
	7.7.3 Performance implications


	Chapter 8. Conclusions
	8.1 The technology
	8.1.1 Web-based applications
	8.1.2 Pervasive applications
	8.1.3 Enterprise Application Integration

	8.2 IBM offerings
	8.2.1 MQSeries Publish/Subscribe
	8.2.2 MQSeries Integrator
	8.2.3 More Information


	Appendix A. Hardware and software environment
	Hardware
	Software

	Appendix B. MQSeries Publish/Subscribe administration commands
	strmqbrk
	dspmqbrk
	endmqbrk

	Appendix C. MQSeries Integrator administration commands
	MQSeries Integrator pub/sub admin commands
	Admin commands for mixed brokers
	mqsilistmqpubsub
	mqsijoinmqpubsub
	mqsiclearmqpubsub


	Appendix D. The GUI-based subscriber application
	AMI configuration
	Subscriber configuration

	Simple Web subscriber application
	AMI configuration
	Servlet configuration
	Additional WebSphere Application Server configuration

	Web subscriber Forecast application
	JMS configuration
	MQSeries Integrator configuration
	Servlet configuration
	Additional WebSphere Application Server configuration
	Advanced Web subscriber Forecast application
	AMI configuration
	Servlet configuration
	Additional WebSphere Application Server configuration


	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material


	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections


	Special notices
	Abbreviations and acronyms
	Index
	Back cover

